Retrieving dust aerosol optical depth and altitude using AIRS data

Clémence PIERANGELO, Alain CHEDIN, Cyril CREVOISIER, Sylvain HEILLIETTE, Raymond ARMANTE, Claudia STUBENRAUCH, Noëlle A. SCOTT LMD-IPSL, Ecole Polytechnique, Palaiseau, France

3. Cloud mask :

Because cloud masks usually aim at providing high-confidence clear-sky pixels, they may consider aerosol loaded situations as cloudy.

→Special cloud mask : 3 tests

•Low cloud mask BT 315 - BT 140 < 0.5 (for dust : >1)

•Cirrus cloud mask BT 313 – BT 177 > 1.5 (for dust : <0)

•Medium altitude cloud mask BT 286 - reg(AMSU 5,6,8)

Circuit Reflectance Mean	74pr200
	0.3000
	0.2250
REG NAME	0.1500
	0.0750

A Street

Comparison between Aqua-AIRS cirrus detection (BT 315 - BT 140), (top map) 27th april 2003, and Terra-MODIS cirrus reflectance, (bottom map)

NODIS/Terra M0D08_D3.42003117.004.2003126182507.hd

5. Results :

Comparison with MODIS

Dust event of April 27th 2003 : · Good comparison of retrieved AOT with MODIS AOT · retrieved altitude : vertical resolution limited to 1500 m at the moment

Dust altitude retrieval, 9th July → Summer transport at higher altitudes than winter transport : must be checked with more events.

	MODIS cloudy	MODIS partly cloudy	MODIS clear
AIRS cloudy	50.39 %	3.60 %	0.12 %
AIRS partly cloudy	4.29 %	2.33 %	0.10 %
AIRS clear	12.87 %	17.27 %	9.02 %

Comparison between AIRS cloud mask and MODIS cloud mask for a tropical zone (red square), for one day (27th april 2003).

MODIS cloud coverage = 89.5 %

A

AIRS cloud coverage = 60.2 % (tropical, green *nane 0.00000 rectangle : 65.1 %)

d.80 Aqua-MODIS AOT Terra-MODIS AOT Aqua-AIRS AOT 26th April 27th April 27th April (local ECT=1.30 p.m.) (local ECT = 10.30 a m)(local ECT=1.30 a m)

 \rightarrow dust deposition over the Atlantic Ocean.

4. Retrieval algorithm of aerosol properties

Channel selection :

·Sensitivity to aerosols •No or weak sensitivity to atmospheric variable gases (water vapor, ozone) •Surface transmittance (~ weighting function : altitude) •Different wavelength bands (different sensitivity to altitude and optical depth)

•Possibility of contraction (condition : contraction effect < 0.05 K)

AIRS channel	Wavenumber (cm-1)	wavelength (µm)	Surface transmittance	Contraction (cm-1)
134	843	11.86	0.55	0.1
135	871	11.48	0.25	0.05
140	965	10.36	0.68	0.1
165	1072	9.33	0.6	0.05
166	1074	9.31	0.35	0.02
177	1227	8.15	0.55	0.05
179	1236	8.1	0.25	0.01
181	1250	8	0.2	0.01
313	2607	3.84	0.6	0.1
315	2616	3.82	>0.9	0.1

• 567 TIGR atmospheric situations (tropical)

• 5 aerosol optical depth :

0, 0.4, 0.75, 1.5, 2.5 + interpolation 4 altitude levels 4A :

38 (500-1000m), 35 (2000-2700m), 33 (3500-4500m), 31 (5300-6000m)

1 aerosol model ;

Mineral transported from OPAC database

Distance to minimize :

Validation :

>Validation of the algorithm with computed spectra : 90% of good retrieval for optical depth and altitude (good representativity of atmospheric situations + information contained in the 10 selected channels sufficient to retrieve AOT and altitude)

 $\sum_{i=1,10} \frac{(BT_{calc} - BT_{obs})^2}{\sigma_i} + \sum_{4diff} \frac{(\Delta BT_{calc} - \Delta BT_{obs})^2}{\sigma_{diff}}$

Conclusions :

We have shown that a subset of 10 AIRS channels is able to retrieve both AOT and altitude of mineral dust aerosols.

-AIRS night detection : completes MODIS daytime retrievals.

FUTURE WORK :

-Validation of the retrieval using model simulations, lidar data (GLAS) -More systematic intercomparison with MODIS

- -Retrieval over land, using MODIS or AIRS emissivity
- -Multilayer perceptron instead of look-up-tables

Retrieval of aerosol spectroscopy instead of one unique aerosol model

Look-Up-Tables

 \rightarrow 10 channels

965	10.36	
1072	9.33	Γ
1074	9.31	
1227	8.15	
1236	8.1	
1250	8	Γ
2607	3.84	Γ
	965 1072 1074 1227 1236 1250 2607	965 10.36 1072 9.33 1074 9.31 1227 8.15 1236 8.1 1250 8 2607 3.84

Approach :