

Physical and statistical approach for MSG cloud identification

E. Ricciardelli *. F. Romano*. V. Cuomo*

* Institute of Methodologies for Environmental Analysis, National Research Council

(IMAA/CNR), Italy

SEVIDI

The Spinning Enhanced Visible and Infrared Imager on board the First Meteosat Second Generation have been available since February 2003

Its spatial resolution is 3 km at sub-satellite for all channels except 1km for the high resolution visible channel. The major improvement is its enhanced spectral characteristic that. combined with its higher temporal resolution (15 minutes) allows an accurate cloud cover analysis.

INTRODUCTION

Cloud detection is essential to estimate accurate atmospheric and geophysical parameters. statistical and physical approach has been developed for MSG in order to improve cloud identification for very thin and very low cloud. The statistical algorithm is a pattern recognition technique that uses textural and spectral features, it was trained on the basis of MSG images collected for different seasons and different regions. The physical algorithm is based on dynamic threshold tests and it doesn't require any ancillary data. If the algorithms do not agree a decision has to be taken to decide the final FOV flag.

MODIS

The Moderate resolution Imaging Spectroradiometer on board

AQUA and TERRA polar EOS satellites, provides global

observations in VIS and IR region of the spectrum.

It measures radiances at 36 wavelength(from 0.4 to 14.5 um)

at 250m spatial resolution in two visible bands, 500m resolution

in five visible bands and 1000m resolution in the infrared bands.

sest to the

in which

Physical approach

The algorithm is based on multispectral threshold technique applied to each pixel of the image. The test depends on the solar illumination (day time, night time, sun glint) and on the viewing angles. The thresholds have been determined on the basis of training database which gather pixels manually selected and labeled as cloud free.

Description of test sequences:					
over land, daytime	over sea, daytime				
T108 <tresh t108<="" th=""><th>. T_{10.8}< Tresh T_{10.8}</th></tresh>	. T _{10.8} < Tresh T _{10.8}				
 R_{0.6} > Tresh_R_{0.6} T_{10.8} - T₁₂ > Tresh_T_{10.8}T₁₂ T T > Tresh_T T T 	• R_{16} >Tresh_R ₁₆ T T >Tresh_R T T				
• $T_{8,7} = T_{10,8}$ Tresh $T_{8,7} T_{10,8}$ • $T_{10,8} = T_{3,9}$ Tresh $T_{10,8} T_{3,9}$ and $T_{8,7} = T_{10,8} T_{3,9}$	• $T_{108} = T_{12}$ $Tresh_{108} T_{108}$ • $T_{8.7} - T_{108} > Tresh_{18.7} T_{108}$ • $T_{8.7} - T_{108} > Tresh_{18.7} T_{108}$				
1102 - 4.5 - 1.5(1/cos(asat)-1)	• 1103 - 1332 11031 11031 39				
over land, night time	over sea, night time				
, T _{10.8} < Tresh_T _{10.8}	, T _{10.8} < Tresh_T _{10.8}				
. T _{10.8} - T ₁₂ > Tresh_T _{10.8} T ₁₂	. T _{10.8} - T ₁₂ > Tresh_T _{10.8} T ₁₂				
 T_{8.7} – T_{10.8}> Tresh T_{8.7}T_{10.8} T T T T much T T and T 	 T_{8.7} – T_{10.8}> Tresh T_{8.7}T_{10.8} T T T > Tresh T T 				
$T_{108} = T_{39} = T_{108} T_{108} T_{39}$ and $T_{8.7} = T_{108} = -4.5 - 1.5(1/cos(asat)-1)$	$T_{103} = T_{13} > Tresh T_{103} T_{10}$				
 T_{3.9} - T_{10.8}> Tresh T_{3.9}T_{10.8} 					

For the i-th test the probability that the pixel is clear, $P_{i,clour}$, or cloudy, $P_{i,cloud}$, will be determinate. If the i-th test is successful (the pixel is cloudy) the $P_{i,cloud}$ is determined on the basis of the distance between the real value and the threshold:

> DiffTresh $P_{i,cloud} = \frac{D_{i,g}}{DiffTreshMax_{i,cloud}}$

Otherwise, if the i-th test is not successful, it'll be

$$P_{i,clear} = \frac{DiffTresh}{DiffTreshMax_{i,clear}}$$

If $\sum P_{i,cloud} > 0$ then $P_{physical,cloud} = \max(P_{i,cloud})$,

f
$$\sum P_{i,j} = 0$$
 it'll be $P_{physical,clear} = \min(P_{i,clear})$

The *DiffTresh* is the difference between the threshold and the brightness temperature or the brightness temperatures difference. For each test, DiffTresh max values have been calculated on a sample of MSG imagery collected in different regions of the earth and at different times. DiffTreshMax has been defined as the mean of max values.

Statistical approach

The classification algorithm is based on a K-nn pattern recognition technique and it uses textural and spectral features estimated in boxes 3x3. Spectral and textural features characterizing each pixel are extracted for IR SEVIRI radiance data at 3.9µm (particularly useful in the detection of low level water cloude) 8.7 um 10.8 um 12 um The features are shown in the table:

Spectral features (describe the grey level r	ange)	The large number of spectral and			
Maxima		textural features can be r	educed since not		
Minima		textural loatares ball be i	caacea sinice not		
Ratio between maxima and minima		all of them are useful. The Fisher dist			
Mean		the device the second state of the second state of			
Textural features (describe aspects of the	variability of a scene and are computed from th	is the feature selection criterion:			
grey level differences between each individual	pixel and its neighbors)	$D_{iik} = v_{ii} - v_{ik} /(\sigma_{ii} + \sigma_{ik})$. This	Description of the		
Contrast $\frac{1}{2} \sum_{n=1}^{2} \frac{1}{n} \sum_{n=1}^{2} \frac{1}{n} n$	P(d, 3) is the grey level difference histogram, d is the difference between the grey	parameter measures the	classes		
$C(a, S) = \frac{256}{256} \sum_{d=0}^{N} P(a, S) \frac{N}{N}$	levels separated in direction 9 (0°,45°,90°,	ability of the variable v_i	Clear over land		
Entropy	135) by the distance $\rho = 1$.	to differentiate class	Clear over water		
$ENT(d, \theta) = -\sum_{d=0} \left(\frac{P(d, \theta)}{N} \right) \log_{\theta} \left(\frac{P(d, \theta)}{N} \right)$	P(d, 9) denotes the number of times difference d occurs between pairs of grey	C from class C.	Low clouds		
Angular Second Moment	level at the specified distance and orientation in the box 3x3.	K nearest neighbor	Cumulus		
$ASM(d, \mathcal{G}) = \sum_{i=1}^{255} \left(\frac{P(d, \mathcal{G})}{N} \right)^2$	N is the total number of pairs of points in the	classifier	High stratiform clouds		
Mean	P. In direction	The class likelihoods have been estimated			
$M(d, \mathcal{G}) = \frac{1}{256} \sum_{d=0}^{255} P(d, \mathcal{G}) \frac{d}{N}$		as follows:			
The area-averaged Robert Gradient is a measure	re of edge strength and it is maximum in	$P(v,C) = \frac{1}{NV}$			
regions of sharp brightness contrast.		-11-			
$\overline{RG} = \frac{1}{(M-n)(M-n)} \sum_{m=0}^{M-\rho(N-\rho)} \left[I(m,n) - (I(m+\rho, n)) \right]$	$(n + \rho) + I(m + \rho, n) - I(m, n + \rho)$	where N _i is the number of samples in			
B(m,n) is the massured brightness at coordina	e (m n) in the MVN (3v3) hav and a is the	class C _i and K _i are the samples closest to t			
and the measured brightness at coordina	c (m,n) m are mar (oxo) box and p is the	fanture contant 7. Min the column is obtain			

those K_i reside. In order to define the distance between two points in the feature space and calculate the volume V, we have assumed that the feature space is a metric space and the function which expresses the distance between \vec{v}_1 and \vec{v}_2 is the Euclidean distance: $d(\vec{v}_1, \vec{v}_2) = (\sum_{i=1}^{n} (v_{1,i} - v_{2,i})^2)^{U_i}$

When the Euclidean distance measure is used, some features (the ones with the largest variance across the design set) tend do dominate this measure so it has been necessary to normalize the features

Finally, we are able to classify the pixel as cloudy if $(P(\vec{v}, C_{clar}) < P(\vec{v}, C_{clar}) < P(\vec{v},$

and $P_{knn,cloud} = \max(P(\vec{\nu}, C_{low_cloud}), P(\vec{\nu}, C_{canualus}), P(\vec{\nu}, C_{high_stratifurm}))$

Otherwise, the pixel is clear if $(P(\vec{v}, C_{clear}) > P(\vec{v}, C_{low}, clear)) \land (P(\vec{v}, C_{clear}) > P(\vec{v}, C_{clear}) > P(\vec{v},$

and $P_{km,clear} = P(\vec{v}, C_{clear})$

Results

MSG cloud mask has been validated against MODIS cloud mask (Ackerman et al.,1998) and compared with SAFNWC cloud mask (Schroder et al.,2002). MODIS cloud mask is collocated within SEVIRI footprint. SEVIRI FOV is declared clear if a fixed percentage (70%, 90%,100%) of MODIS pixels within SEVIRI FOV has been determined to be clear. In result interpretation it should be observed that MODIS cloud mask not always detects cloudy pixels correctly. Moreover it sometimes classifies as uncertain pixels that CMESP detects correctly. The blue ring surrounds some pixels that SAF cloud mask

detects wro	ngly.	Percentage of MODIS	FOVs detected exactly					
Percentage of MODIS pixels determined to be	Total number of clear MODIS pixels used	Total number of cloudy MODIS pixels used for	clear within SEVIRI FOV	Cloud Mask CMESP		Cloud Mask SAF		
clear within SEVIRI FOV	for validation	validation		cloudy	clear	cloudy	clear	
70%	1546074	2225386	70%	90.4%	93.6%	88.3%	92.8%	
90%	1487811	2296947	90%	90.7%	95.2%	99.5%	04150	
100%	1416786	2386948	100%	80.7 %	94.6%	97.5%	02.5.90	4

a) SEVIRI Channel 9, 10.8 µm

cloudy Clear has to be done: If $\overline{RG} > \overline{RG}_{tradeold}$ the pixel is cloudy. RGreated is a dynamic threshold ti ch 4, 3.9 p

methods (CMESP)

cloudy 📕

c) MOD IS Cloud Mask

Summary

In this work, a physical and statistical approach has been developed for MSG and has been combined in order to improve cloud identification of very low and thin clouds. This approach does not need ancillary data which are not always available. The two approaches compensate each other. The statistical algorithm is very useful in low clouds and high stratiform clouds detection, while the physical one is essential in discriminating clouds from snow. Moreover, physical approach can be decisive in detecting clear pixels that sometimes are classified cloudy by the statistical method, because of their very high entropy or contrast, especially over not homogeneous land.

en,H. L. Gleau, 2005, MSG/SEVIRI cloud mask and type from SAFNWC, Inte Sensing, Vol. 26, No. 21, pp. 4707-4732; . 1977. A comparative Study of Cloud classification Techniques. Remote Ser (ol. 6,pp.67-81; E. Ebert, 1988, Analysis of Pol Joud Analysis Scheme, Jour louds from Satellite Imagery Using Pattern Recognition and a 3/ Applied Meteorology, Vol.28, pp. 382-399 Senerating cloudmasks in spatial high-resolution observation of ation, *Int. Journal of Remote sensing*, vol.23, no 20, pp.4247-424 Menzel 1998, Discrimating Clear –Sky from clouds with Joud Analysis Scheme. Journal of Applied Meteorology. Vol 28, pp. 382-399 K. Schroder, R. Bernardz, 2002, Generating Loudanskis ne papal high-resolution obsessing texture and malance information, *Int. Journal of Remote sensing*, vol 23, 20, 20, pp. 423, 20, 20, pp. 425, 20, 20, pp. 426, pp.

b) SEVIRI Cloud Mask CMESP

clear uncertain d) SEVIRI Cloud Mask SAF cloudy clear

Ensemble of Statistical and Physical

The physical and statistical approach run

independently, then the individual decisions are

matched; if the two methods do not agree, the final

If the difference between the probabilities is lower than

FOV flag will be clear if $P_{physical,clear} > P_{knn,cloud}$ or $P_{knn,cloud} > P_{physical,cloud}$

5%, a further test on the Robert Gradient (\overline{RG}),

