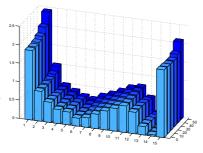
AMSU-A background errors in HIRLAM 3D-VAR

Tomas.Landelius@smhi.se Nils.Gustafsson@smhi.se

Swedish Meteorological and Hydrological Institute SE 601 76 Norrköping, Sweden

HIRLAM

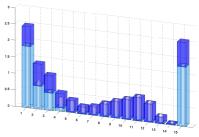
- Limited area model
- Member states: DMI, FMI, VI, IMS, KNMI, DNMI, INM and SMHI
- \bullet 22 & 44 km at SMHI
- TOA 10 hPa (31 lev)
- Spectral version
- Cut off $\approx 2 \text{ hrs}$


Variational schemes allow observations (y) to be used for which model equivalents (Hx_b) can be computed. The optimal analysis increment is given by

$$x_a - x_b = BH^T(HBH^T + R)^{-1}(y - Hx_b)$$

where HBH^T is the background error in observation space and R holds the observation error covariances.

View Angle


The spatial error variation in the northern Atlantic is negligeble. However, there is a zenith view angle dependence for the channels sensitive to the surface (ch 1-4 & 15).

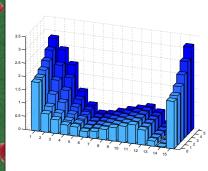
Background errors as a function of zenith view angles from 0 (light) to 50 (dark) degrees.

Monte Carlo

 $B = E\{\epsilon_b \epsilon_b^T\} \approx \hat{B}$ $= \frac{1}{N} \sum U \eta_i \eta_i^T U^T$ where η is N(0, I) and U is the transform from control to model space.

The diagonal bg error $\sigma_b = \sqrt{{\rm diag}(HBH^T)}$ (white bars) with respect to AMSU-A channel number.

Error contribution of uncertainties in q (light blue) and T (dark blue) if assumed independent.


RTTOV-5

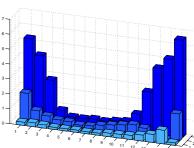
The RTTOV-5 model is used for the observation operator H.

It is linearized around a 6 hr forecast from December 1999.

The surface temperature is not in the control vector and its error was set to 1 K.

Only ice free sea points are used in this study.

Surface temperature


The background error variation with respect to the standard deviation of the surface temperature (0-5 K).

Background departure

Here the NE Δ T (1) together with σ_b (2) and std $(y - Hx_b)$ (3) are shown.

With $d = y - Hx_b$, note that we have

 $E\{dd^T\} = R + HBH^T$

