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Introduction

Deutscher Wetterdienst (DWD) has recently enforced efforts to assimilate
satellite radiances. Hitherto only satellite retrievals (SATEMS) and atmo-
spheric motion wind products (SATOBS) were assimilated.

At a first step more satellite data is used in a quite innovative way: In order
to take part at ECMWE’s great expertise in using satellite data, profiles of
temperature, humidity and wind of IFS analyses over sea are assimilated
as conventional radiosonde data with the operational Optimal Interpolation
analysis system. These data (named Pseudo-Temps) are used one time per
day in an update run. In this way the global system takes part in the
abundance of satellite data used at ECMWF, whereas it is still driven in-
dependently with its own analysis and forecast modules. Humidity profiles
are assimilated only above 700 hPa in order to not affect the boundary layer
climate of the global model GME of DWD.

Meanwhile development of 1D-Var retrievals for ATOVS has progressed to-
wards operational application. In the northern hemisphere the forecast qual-
ity of the Pseudo-Temps method is almost reached using 1D-Var retrievals
of AMSU-A instead. In the southern hemisphere, however, it seems that it
is required to assimilate more satellite data in order to approach the quality
of the IFS profiles, that are rich in satellite information.

Among many other developments required for assimilating satellite radi-
ances the tuning of the observation and background errors is an important
factor to realize best positive impact in forecast quality. In the following
a method is described briefly that is simple and effective: The sizes of the
error matrices are tuned so that the method is theoretically consistent and
that the resulting retrievals best fit IF'S profiles that are considered good
approximations of truth.



Tuning of Observation and Background
Error Covariance Matrices R & B

Observation and background errors are usually specified along with their
correlations by the constant matrices R and B . These matrices are required
to formulate the cost function of variational analysis schemes. Although the
cost function of 3D-Var and 4D-Var has the same shape, in the following only
1D-Var (one-dimensional vertical retrievals of temperature and humidity) is
considered.

The cost function J(z) consisting of observation term J,(z) and background
term Jy(z) reads
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with standard notation.

Commonly R is defined diagonal neglecting observation error correlations.
The correlations of B are however essential for variational data assimilation.
The specification of the sizes and the relation of the errors matrices R and
B is an important tuning problem for variational data assimilation and a
number of methods exist (e.g. Chapnik et al. [1]).

Two Inequalities for Consistency

Minimisation of J(z) results in the retrieved profile z,. The size of the cost
function at the minimum J(z,) may be used for some theoretical study.
If the error matrices R and B are specified correctly (and if the errors are
Gaussian and no biases exist), then the empirical distribution of a large
sample of 2 7 (z,) should meet a x2-distribution with n, degrees of freedom
(e.g. Talagrand [2]) (n, denotes the order of R, i.e. the number of channels
in y). The expectation F and variance Var of J(z,) are given by
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Assuming uncorrelated observation errors two inequalities can be deferred
for the diagonal terms r;, 1=1,...,n, of R: From

T(2a) < T(w3) = To(s) = %Z (yi=Hi(z))?
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it follows that

The overbars denote the mean of the squares of the sample. This is true
for any number and combination of channels, thus also for each individual
channel as well and thus

ri < (yi—H;i(zp) )? foralli=1,...,n, . (2)

Equation (2) means that the observation errors should be smaller than the
standard deviation of observed minus background radiance departures for
all channels (no biases assumed). This provides an upper bound for the ob-
servation errors'. However, in reality the observation errors are correlated;
taking these correlations into account leads to a larger variability of the
background departures than reflected by the diagonal terms only. Larger
observation errors should be considered therefore when assuming uncorre-
lated observation errors. In this case Eq. (2) may become invalid. Correlated
observation errors are considered a much more serious problem for infrared
high spectral resolution sounders (AIRS, TASI, e.g.), but they should be
kept in mind for ATOVS as well.

On the other hand,
132 (y;— Hi(z,) )2
T(24) = To(za) + To(2a) > To(za) = _Z (yi—Hi(za))"

leads to
ri > (yi—Hi(z4))? foralli=1,...,n, . (3)

Equation (3) says that the standard deviation of observed minus analysed
radiance departures should be smaller than the observation errors, which
gives a lower bound for them. However this inequality is not very useful to
define the observation errors as well, since the analysed radiances depend on
the analysis z, and as such on R. When reducing the observation errors, the
analysis is pulled to the observations and the remaining analysis departures
reduce as well. No reasonable iterative limit can be found.

Although Egs. (2) and (3) cannot be considered strictly valid in case of
error correlations, they give realistic size limits for a consistent assimilation
scheme.

'This inequality is better known as derived from (y; — H;(23) )2 = r; + H;BH?, which
says that the background departures consist of observation errors and the background
errors in observation space.



Use Pseudo-Temps as Additional Information

Additional information is required for prescribing the observation and back-
ground errors, as it is not possible to derive them from a posteriori statistics
of the data itself (Talagrand [2]). The basic idea proposed here is that the
relation between observation and background errors is tuned so that the
resulting retrievals are closest to truth. In order to define the truth, ra-
diosonde data would be the first choice. They are in general however too
sparse to provide collocations with satellite radiances over sea of significant
large sample sizes.

Other approximations of truth are advanced numerical analyses that are as
well used as reference for various surveys. For this study the Pseudo-Temps
are used, that are derived from profiles of the IFS analyses, as additional
information in order to tune the sizes of the observation and background
errors. As they have no restrictions in spatial sampling they easily provide
large sample sizes.

The tuning proposed here is performed according to two conditions:

1. The empirical distribution of the minima of the cost function should
meet the statistical expectation n,/2. Both matrices B and R simply
can be multiplied with one scalar factor to guarantee that.

2. The relation of R and B is defined in order to get best collocations
of the retrievals compared to the Pseudo-Temps. Only scalar factors
have been applied on B, leaving the background error correlations
untouched. This condition has been met by try and error.

When performing the tuning it was experienced that changing the sizes of R
and B has only a small effect on the retrievals. Large changes of the errors
are required to generate small changes in the profiles. On the one hand
this makes the resulting error specification inaccurate, since small errors
in the collocation statistics against the Pseudo-Temps may lead to much
larger errors in the result of the tuning. On the other hand, as the resulting
retrievals are what is important, this means that it is not required to be
too accurate in the specification of the error sizes and that the accuracy
provided by this method suffices.



Results

The tuning was performed for 1D-Var retrievals using AMSU-A radiances
of channels 4 to 12 over sea. As the most important result of the study it
came out that the previously defined errors were much too large in general
and that the observation errors were too large compared to the background
errors. This put too little weight on the observations in the variational
retrieval. Figure 1 shows the collocation of temperature and humidity re-
trievals against ECMWEF analyses for one week at the end of January 2005.
The retrievals with tuned errors show better bias; the standard deviation
around 800 hPa is significantly reduced.
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Figure 1: Collocations of first guess and analysed profiles against Pseudo-
Temps for one week. Dashed blue: first guess, solid blue: retrieval with old
statistics, solid red: retrieval with tuned errors. Humidity below 800hPa is
not in statistics, since not assimilated as Pseudo-Temps at DWD.

Table 1 compares the tuned observation errors with standard deviation of
observed minus background and observed minus analysis radiance depar-
tures. For convenience the observation errors have been finally tuned as

[|o; — b
r=T (4)



which is close enough to the optimal value that has been found according to
the two conditions defined above. (||0;—b;|| is a more handy abbreviation for

(yi—H;(z) )? as ||o;—a;|| stands for \/ (y;— H;(z,))?). This definition
of Eq. (4) clearly fulfills Eq. (2), but it also matches (at least almost) the
requirement Eq. (3).

Channel |4 5 6 7 8 9 10 11 12
[Jo; — bi|] | 0.55 0.31 0.22 0.21 0.34 036 0.34 034 048

ri 0.28 0.15 0.11 0.10 0.16 0.18 0.18 0.18 0.23
llo; —a;]| | 0.17 0.09 0.07 0.07 0.7 0.13 0.12 0.13 0.12

Table 1: Standard deviation of observed minus background radiance de-
partures (||o; — bs]|) and of observed minus analysis radiance departures
(l|oi — a;||) in comparison with prescribed observation errors r;

Figure 2 shows the resulting histogram of 2 7(z,) in comparison with the
theoretical distribution. The resulting distribution has a mean of 8.2 which
is only slightly smaller than the theoretical value of n,=9. The specified
errors are little larger than theoretically optimal, but the difference is not
considered to affect the retrieved profiles.

Figure 2: Histogram of resulting minima of 2 J(z,) (step function) and
theoretical x*-distribution with n, = 9 degrees of freedom (continuous line)

A significant reduction of the standard deviation of the collocations against
Pseudo-Temps around 800hPa has been shown in Fig. 1 above. However
what does in mean in terms of forecast quality? Fig. 3 shows anomaly scores
of 500 hPa geopotential height of trial experiments with old and new error
statistics compared to operational DWD forecasts (using Pseudo-Temps)



for the southern hemisphere. A significant improvement of forecast quality
has been achieved with the new error statistics. The anomaly scores with
the tuned errors reach the operational forecast scores for that period. The
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Figure 3: Anomaly scores of the 500hPa geopotential height for opera-
tional DWD forecasts (including Pseudo-Temps, red), experiment 1004 using
ATOVS 1D-Var retrievals with old statistics (green) and erperiment 5132
using ATOVS 1D-Var retrievals with tuned statistics (blue). (1004 and 5132
are without Pseudo-Temps and SATEMS, channel AMSU-A J has not been
used). Sample is 10 days only, however similar improvements of new statis-
tics compared to old errors have been confirmed with other experiments as
well.

large positive signal confirms that the tuning of the error statistics towards
Pseudo-Temps is reasonable.
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