NOAA Satellites and Information

National Environmental Satellite, Data, and Information Service

B28 – Global Coverage of Total Precipitable Water using the Microwave Integrated Retrieval System

S.-A. Boukabara¹, K. Garrett², W. Chen³, C. Kongoli³, B. Yan³, F. Weng¹, R. Ferrarro¹, A. Li³ and L. Zhao¹

¹NOAA/NESDIS/STAR, Camp Springs, MD 20746, USA ²IMSG Inc @ NOAA/NESDIS/STAR, Camp Springs, MD 20746, USA

Introduction & Motivation

- · Operationally, extend the TPW field over all surfaces from microwave sensors (traditionally only over ocean)
- Use a generic algorithm that could be applied on all sensors in a consistent fashion
- This has many useful applications (forecasters use it to determine precipitation potential for example)
- · Global surfaces are distinguished by spectral signatures: ocean, seaice. land and snow.

NOAA-18

Algorithm: Microwave Integrated Retrieval System (MIRS) •1DVAR Algorithm based on Optimal Estimation theory (iterative approach)

• Assumptions made: (1) Locally-linear problem, (2) Gaussian distributions of geophysical state, (3) Non-biased radiances, (4) Gaussian instrumental errors . With these assumptions, the cost Function to minimize is:

$$J (X \neq \left[\frac{1}{2}(X-X_{0})^{T} \times B^{-1} \times (X-X_{0})\right] + \left[\frac{1}{2}(Y^{m}-Y (X))^{T} \times E^{-1} \times (Y^{m}-Y (X))\right]$$

- MIRS suits moderately non-linear/ non-Gaussian problems
- Accommodates sounders and/or imagers
- · Covariance matrix computed from NOAA-88, ECMWF sets (clear sky) and from a set of MM5 runs (for cloud & precipitation parameters).

Methodology: TPW retrieval over non-ocean Surfaces

- Method is not new (Moncet et al., Forsythe et al., Ruston et al.)
- Key is the inclusion of emissivity spectrum in the retrieved state vector X.
- Only difference between the ocean, sea-ice and land retrieval is the emissivity being retrieved (and associated spectral constraints used: **B** & X₀ arrays)
- Ocean emissivity constraints are built on FASTEM-3 model
- Non-ocean emissivity constraints (and backgrounds) are based on analytical emissivities computed with collocations between microwave measurements and Global Data Assimilation System (GDAS) Analyses
- the TPW is a result of post-processing vertical integration. The MIRS only retrieves moisture profile.

08-04-18 Aec (V1122)

Validation

• Daily comparison to GDAS analyses fields (that assimilates radiosondes and GPS data over land) -see right panel-

- · Monitoring of scan dependence of difference
- · Monitoring map of difference to assess regional validity
- · Daily comparisons to ECMWF
- · Comparisons to radiosondes (see below)
- Stratified performances by surface types

Perfs over Ocean	Bias (mm)	Std Deviation (mm)
N15	0.49	3.85
N16	-1.10	3.85
N17	-0.2	3.30

- MIRS runs operationally for NOAA-18, METOP-A and will soon for DMSP/SSMIS
- MIRS produces TPW fields globally (ocean, sea-ice, land and snow) with no apparent discontinuies.
- TPW is produced in clear and cloudy areas
- Performances monitored for different surface types
- Retrievals compared to radiosondes on daily basis

References:

Operational global TPW field, blended from N18 and Metop-A, available to forecasters