

NOAA/NESDIS Plan for AIRS, CrIS and IASI: Program and Science

Mitch Goldberg, Chris Barnet, Walter Wolf, Lihang Zhou, Tom King, and Murty Divakarla

Satellite Meteorology and Climatology Division

NESDIS Office of Research and Applications

May 30, 2005 ITSC-14

AIRS & MODIS PRODUCTS ARE DISTRIBUTED THROUGH THREE MAIN CHANNELS

Risk Reduction Benefits

- Early demonstration of operational processing of high spectral resolution infrared sounder data prior to CrIS, IASI and GOES-R
- Early opportunity for forecast centers to learn how to assimilate advanced IR data

AIRS Update

- ORA has implemented the AIRS/AMSU processing system quasi-operational
- Processing system is based on the retrieval methodologies developed by the AIRS Science Team
- Science Algorithms developed by NASA, NOAA,
 UW, MIT, UMBC truly a collaborative effort
- Science improvements are continuing

Science Improvements

- Adding MODIS to improve cloud clearing
- Adding trace gas retrieval algorithms to derive CO2, CO, and CH4
- Improving surface emissivity/bidirectional reflectance (non-ocean)
- Improving data compression algorithms

AMSU is a critical component of AIRS

provides retrievals in overcast conditions

AIRS/AMSU Products for a ≈50 km footprint (varies w/ view angle), 324,000 footprints/day

- Cloud Cleared Radiance
- Temperature
- Moisture
- Ozone
- Land/Sea Surface
 Temperature
- Surface Spectral
 Emissivity
- Surface Reflectivity
- Cloud Top Pressure

- Cloud Liquid Water (AMSU product)
- Cloud Fraction (per 15 km footprint).
- Carbon Monoxide
- Carbon Dioxide
- Methane
- Cirrus Cloud Optical Depth and Particle Size, Aerosols

NOAA-Unique AIRS Products

- Tailored radiance datasets for NWP data assimilation, including PC scores
- Products into BUFR format
- Use of MODIS to improve AIRS cloud-cleared radiances.
- Noise-filtered radiances based on eigenvector decomposition (reconstructed radiances)
- Thinned datasets for scientific studies, including reprocessing for climate.

AIRS Radiance Products from NOAA

- a) center/warmest of 3 x 3 from every AMSU fov, ~300 channels. + AMSU (16 mbytes per orbit)
- b) 200 principal component scores using same thinning as a)
- c) Every 2nd 3 x 3 AIRS fovs (~300 channels) plus all AMSU
- d) cloud cleared a) and b)
- e) Reconstructed Radiances
- f) Full resolution AMSU
- g) MODIS at AIRS resolution

AIRS Level 2 Products from NOAA

- a) Full resolution level 2 products temperature, moisture and ozone, cloud amount, cloud height, surface emissivity, surface temperature, including carbon products
 - b) MODIS cloud products @ AIRS resolution

NOAA Operational Processing

- AIRS/AMSU/MODIS integrated processing system is currently being modified to generate the same family of products from EUMETSAT IASI/AMSU/AVHRR and from NPOESS CrIS/ATMS/VIIRS
- Same Science (e.g. same transmittance model, same cloud detection/clearing, etc) and Software will process AIRS, IASI and CrIS
- Prelaunch Simulated Products -- repeating AIRS approach

Science and Applications

Cloud Clearing using MODIS

Carbon Products

Validating NWP Products

Temperature errors as a function of sounder instrumentation

Cloud clearing significantly improves data coverage

735.69 cm-1 (peak ~ 700 mb)

ALL diff < +- 0.5 K

Cloud-cleared minus clear simulated brightness temperatures (ECMWF)

Observed minus clear simulated brightness temperatures (ECMWF)

965 cm-1 (window)

ALL diff < +- 0.5 K

Cloud-cleared minus ECMWF

NEAR SURFACE

Relatively few observation with no cloud clearing

Raw minus ECMWF

WE have tools to integrate MODIS with AIRS for Improved cloud clearing, left figure is cloud-cleared AIR convolved to MODIS, and right figure is MODIS clear averaged to AIRS fov

Cloud-Cleared AIRS convolved to MODIS

Currently using MODIS to quality control AIRS Cloud-Cleared Radiances

Cloud-clear minus clear simulated (ECMWF)

Consequence of not cloud-clearing

All-sky minus clear simulated (ECMWF)

July 2004 AIRS Daily Global CO AIRS CO at 500 mb on 20040701

3°x3° grids trace gas movie – very preliminary

Validating Models

Assumption is AIRS is very accurate.

 AIRS spectrally-resolved radiances can be used to validate model analyses.

Ascending, Cloudy, Averaged STDV (1400-1590cm-1) 2003 - 2004

Significant Reduction
In Measured – Computed
Standard Deviation after \
AIRS is assimilated by
ECMWF

West Tropical Pacific

Summary

- NESDIS will provide operational radiance and level 2 and level 3 products for IASI and CrIS
- Need to integrate high spectral resolution infrared observations and high spatial imager data to provide the most accurate products.
- Research/application areas over the next few years should focus on the use of cloud cleared, the assimilation of cloudy radiances, and the development and validation of trace gases

