RE-ANALYSIS at ECMWF:

Status of ERA-40

Conclusions to date from ERA-40

Plans

Graeme Kelly, Adrian Simmons, Sakari Uppala and the ERA-40 team

ERA-40 – Credits

- NCAR and NCEP supplied most of the older observations
- EUMETSAT supplied reprocessed Meteosat-2 winds
- Met Office and NCEP provided SST and sea-ice analyses
- Other institutions supplied specific sets of observations
- Validation partners assessed plans and performance
- External support came from EU, Fujitsu, IAP, JMA, PCMDI, WCRP and GCOS

ERA-40 - Status

- Production (September 1957 August 2002) was completed in April 2003
- Much European use of products via direct access to ECMWF archives and national data centres
- 2.5° products are available on a public data server (http://data.ecmwf.int/data)
- NCAR will supply products for UCAR and other US use
- Observations have been supplied to JMA for JRA-25

In-situ ("conventional") observations for ERA-40

 Radiosonde and pilot-balloon soundings 	1957 - 2002
 Surface data from land stations and ships 	1957 - 2002
Flight-level data from commercial aircraft	1973 - 2002
Surface data from ocean buoys	1979 - 2002
Satellite data for ERA-40	
NOAA VTPR radiances	1973 - 1978
 NOAA TOVS/ATOVS radiances 	1979 - 2002
Winds from geostationary orbit	1979 - 2002
TOMS/SBUV ozone retrievals	1979 - 2002
SSM/I radiances	1987 - 2002
ERS scatterometer & altimeter	1991 - 2002

Conclusions from ERA-40 – Observations

- Deficiencies in SYNOP collection for early years;
 satellite collections fairly complete, but more possible
- More work needed on biases in radiosonde and satellite data (and model) before next time
- Various problems with old in situ observations
- One period of very bad VTPR bias correction
- Various difficulties in early TOVS period, especially with SSU
- Reprocessed Meteosat winds brought improvements

Mis-located HIRS soundings (detected by JMA)

Impact of reprocessed Meteosat-2 winds

Normalized r.m.s. vector-wind difference (obs - background) for low-level IR winds

Anomaly correlation of southern hemisphere 500hPa height forecasts

Conclusions from ERA-40 – General synoptic quality of analyses

- Best for most recent years
- Quite good throughout for northern hemisphere troposphere and lower stratosphere
- Poor in southern hemisphere in early years
 - Some improvement in early 1970s
 - Big improvement in 1979

R.m.s background and analysis fits to SYNOP pressure observations (hPa)

Anomaly correlations (%) of 500hPa height forecasts

Trends and interannual variability

- Clear improvement on ERA-15 and NCEP reanalysis
- Global temperature trends reasonably well captured from surface to lower stratosphere

Caution needed when looking at regional trends

Trends and interannual variability Globa

Global-mean two-metre temperature anomaly (Deg C)
Annual running mean

Trends and interannual variability (from Ben Santer)

Trends and interannual variability (from Ben Santer)

Trends (from Ben Santer)

Aspects of the hydrological cycle

Extratropics

 Reasonable agreement with GPCP precipitation, especially over land

Tropics

- Excessive rainfall over oceans in the satellite era
- Problem compounded by misinterpretation of effects of Pinatubo aerosols on IR radiances
- Model biased dry compared with IR and MW data, in cloud-free and rain-free areas respectively
- Analyses biased moist compared with SSMI retrievals
- Some improvement taking 24 36h forecasts rather than 0 6h
- Low-frequency variability seems well-captured, nevertheless

0-6h ERA-40 precipitation forecasts (mm/day)

High cloud occurrence – July

ISCCP detects less thin cirrus than HIRS

Stratosphere

- QBO and SAO handled well
- Several quite severe problems with temperature biases
 - due to model biases and difficulties in radiance assimilation
 - worse in ERA-40 3D-Var than in operational 4D-Var
- Too-strong Brewer-Dobson circulation
 - seen in humidity, and ozone when no data is assimilated
 - worse when model temperature biases are corrected by radiance assimilation

Monitoring composition: Ozone

(following Pascal Simon, Météo-France)

Blue: ERA-40 (TOMS and SBUV data assimilated 1979-1988 and 1991-2002)

Red: Groundbased measurements (NOAA/CMDL)

Plans beyond ERA-40

- An interim reanalysis
 - Start next year, T159L60, latest version of forecasting system
 - Run from 1991 (tbd) onwards, continued in close to real time
 - Baseline for ongoing developments (e.g. constituent analysis)
- Experimentation
 - Observing system experiments
 - High-resolution 4D-Var analyses for specific cases
 - To validate new versions of forecasting system
- Development of observational data base and processing software
- An extensive new reanalysis in 2008 or beyond

Aspects of tropical humidity analysis

Short-range forecasts over the tropical oceans

ERA-40 precipitation JJA, 1986-1995 (mm/day)

Total Ozone (Monthly means from 1957 to 2002)

Blue: ERA-40 (TOMS and SBUV data assimilated 1979-1988 and 1991-2002)

Year

Red: Groundbased measurements (NOAA/CMDL)