Handling Clouds for Hyperspectral Infrared Radiance Assimilation

Jun Li[@], Pei Wang[@], Timothy J. Schmit[&], Jinlong Li[@], Chian-Yi Liu[#], and Zhenglong Li[@]

@CIMSS, University of Wisconsin-Madison &SaTellite Applications and Research (STAR), NESDIS/NOAA # Central Taiwan University

> The 19th International TOVS Conference (ITSC-19) 26 March – 01 April 2014 Jeju Island, South Korea

Acknowledgement: This research is partly supported by JPSS PGRR

Motivation

• Question 1: Is direct assimilation of cloudy IR radiances in NWP realistic?

• Question 2: How does cloud detection impact IR sounder radiance assimilation?

• Question 3: How to assimilate thermodynamic information in cloudy situation?

Q: Is direct assimilation of cloudy IR radiances in NWP realistic?

- A: Very challenging because:
- (1) Both NWP and RTM have larger uncertainty;
- (2) Big change of Jacobian at cloud level.

Temp difference (K) geopotential heights (m) at 500 hPa

Hurricane Sandy (2012) forecast RMSE

28 to 00z 30 Oct, 2012

(http://cimss.ssec.wisc.edu/sdat)

Poster: 11p.07

(Zhenglong Li)

6

Aqua MODIS IR SRF Overlay on AIRS Spectrum MAY Y ΒT 36 3534 33 850 900 950 Wavenumber [cm⁻¹] BT [K] Wavenumber [cm⁻¹] Y BT 22 21 Wavenumber [cm⁻¹] **Direct spectral relationship between IR MODIS and AIRS provides unique**

application of MODIS in AIRS cloud_clearing !

AIRS/MODIS cloud-clearing (Li et al.2005)

$$J(N^{*}) = \sum_{i} \frac{1}{\sigma_{i}^{2}} [(R_{M_{i}}^{clr} - f_{i}(R_{v}^{cc}))]^{2} = \min$$

$$J(N^{*}) = \sum_{i} \frac{1}{\sigma_{i}^{2}} [(R_{M_{i}}^{clr} - f_{i}(\frac{R_{v}^{1} - R_{v}^{2}N^{*}}{1 - N^{*}}))] = \min$$

$$\sigma_{i} \text{ is NEdR for MODIS band}$$

$$\frac{\partial J(N^{*})}{\partial N^{*}} = 0 \implies N^{*} = \frac{\sum_{i} \frac{1}{\sigma_{i}^{2}} [f_{i}(R_{v}^{1}) - R_{M_{i}}^{clr}][f_{i}(R_{v}^{1}) - f_{i}(R_{v}^{2})]}{\sum_{i} \frac{1}{\sigma_{i}^{2}} [f_{i}(R_{v}^{2}) - R_{M_{i}}^{clr}][f_{i}(R_{v}^{1}) - f_{i}(R_{v}^{2})]}$$

$$R_{\nu}^{cc} = \frac{R_{\nu}^{1} - R_{\nu}^{2}N^{*}}{1 - N^{*}}$$

solve

- (1) For each cloudy AIRS FOV, 8 pairs are used to derive 8 AIRS CC radiance spectra;
- (2) Compare AIRS CC radiances with MODIS clear radiance observations within the AIRS FOV, find the best pair and the corresponding CC radiance spectrum.

Sounding bands imager are very important in IR/Imager cloud-clearing

AIRS cloud-cleared BT standard deviation (STD) compared with MODIS clear BT measurements

Bias < 0.25 K, STD<0.5 K at most MODIS bands.

The precision of AIRS/MODIS cloud-cleared radiances high rely on MODIS spectral and radiometric calibration.

AIRS clear coverage

AIRS clear + cloud-clearing coverage

AIRS global clear and cloud clearing brightness temperature (descending) on Jan. 1, 2004.

Zhang et al. (2010)

AIRS Channel 210, 2012-10-26-06 Z

AIRS clr

AIRS clr + AIRS cc

-1.2 -1

-.8 -.6

-.4 -.2 0

T analysis difference at 500 hPa between AIRS clr+cc and AIRS clr

.2 .4 .6 .8 1 1.2

Summary

- Better cloud detection with high spatial resolution imager leads to significant NWP forecast improvement using GSI and WRF ARW systems;
- The approaches can be applied to NPP/JPSS CrIS/VIIRS and Metop IASI/AVHRR;
- IR sounder cloud-clearing with collocated imager could expand the "clear" coverage for radiance assimilation;
- Future work will focus on assimilating the cloud-cleared radiances (e.g., CrIS/ATMS, AIRS/MODIS, AIRS/AMSU) in NWP.