

Assessing the Impact of a Potential Degradation in the Satellites Constellation on NOAA NWP

Afternoon Orbit Gap & Tropics-Only COSMIC2 Coverage

Sid Ahmed Boukabara^{1,2}, Kevin Garrett^{1,2,3}, and Krishna Kumar^{1,2,3}

1. NOAA/NESDIS/STAR

2. Joint Center for Satellite Data Assimilation (JCSDA)

3. Riverside Technology, Inc.

Briefing Agenda

Motivation #1: Evolution of the Polarorbiting Satellite Constellation

RIVERSIDE

Overarching Motivation

Assess impact of potential JPSS data gap on global NWP forecast performance.

Establish a baseline to assess added value of the data gap mitigation strategies being implemented by the JCSDA (e.g. AMVs, new sensors, cloudy radiance assimilation, Geo DA).

Motivation#2: COSMIC-2 Plan

SAC-D

Removal of missions with no successor, redundancy, and COSMIC extratropical GPSRO observations

Briefing Agenda

Main points and conclusions

Experiment Design What System?

Data Assimilation and Forecast System

Configure matches current NOAA operational model suite implemented in January 2015.

- NOAA Global Data Assimilation System (GDAS) with Hybrid 3DVar/EnKF
 - Resolution: T574 (30km) for both analysis and 80-member ensemble analyses
- NOAA Global Forecast System (GFS)
 - Resolution: T1534 (13 km), semi-Lagrangian

High Performance Computing

- All experiments are run on JCSDA S4 Supercomputer
- Post-processing, porting, synchronization leveraged from the JCSDA O2R effort

Experiment Design What Season?

- Experiment period: May 15, 2014 August 7, 2014.
 - Summer season capturing Hurricane Arthur case
- Assessment period: May 25, 2014 August 7, 2014.
 - Allow for a 10 day spin-up
- GFS 168 hour forecast run at 00Z only
- Caveats
 - Single season
 - 00Z forecast cycle only

OSE impacts may differ for other seasons, forecast cycles

Experiment Design What Satellite Data?

3PGPS	Current Operational	Туре	Orbit		
51 61 5	F16 (SSMI/S)	MW	Early-AM		
	F17 (SSMI/S)	MW	Early-AM		
Remove quasi-	F18 (SSMI/S)	MW	Early-AM		
redundant	N15 (AMSU)	MW	Late PM		
satellite data.	N18 (AMSU/MHS)	MW	PM		
	N19 (AMSU/MHS)	MW	PM		
Romovo CDSRO	SNPP (ATMS/ <u>CrIS</u>)	MW/IR	PM		
data with no	Metop-A (AMSU/MHS/IASI/HIRS)	MW/IR	Mid-AM		
futuro mission	Metop-B (AMSU/MHS/IASI)	MW/IR	Mid-AM		
	Aqua MODIS IR Winds	IR	PM		
or uncertain	Aqua AIRS	IR	PM		
funding.	Aqua MODIS WV Winds	IR	PM		
Polar Coverage	Terra MODIS IR/WV Winds	IR	AM		
-120 -60 0 60 120	WindSat		Early-AM		
	GOES Sounder, AMVs	IR	GEO		
	JMA AMVs	IR	GEO		
	METEOSAT AMVs	IR	GEO		
	COSMIC	RO	n/a		
GPSRO Coverage	Meton-A (GRAS)	RO	n/a		
	Metop-B (GRAS)	RO	n/a		
and the state	TerraSAR-X	RO	n/a		
1 전 20년 일부 일부 (기)	GRACE	RO	n/a		
	C/NOFS	RO	n/a		
-120 -60 0 60 20	SAC-D	RO	n/a		Polward 24º Latitude

Assimilated

Denied

*MODIS IR winds are a proxy for SNPP VIIRS

Briefing Agenda

Main points and conclusions

500 mb Height Forecast Anomaly Correlation (vs CNTRL)

MEAN AC SCORE	CNTRL	3POLAR	2POLAR	3PGPS
NH (top)	0.843	0.835	0.824	0.830
SH (bottom)	0.854	0.850	0.835	0.841

- 3PGPS significantly degraded in NH and slightly at Day 3-4 in SH
- 2POLAR significantly degraded in NH and SH for Day 1-7 forecast.
- 2POLAR exhibits more frequent low AC score.

200 mb Wind- tropics and Extra Tropics (vs CNTRL)

	VS	s CNTRL		Trop	oics
MEAN RMSE (m/s)	CNTRL	3POLAR	2POLAR	3PGPS	
DAY 1 (top)	4.52	4.84	4.94	4.82	• Sig wi • 2P
DAY 3 (bottom)	7.03	7.12	7.22	7.12	to • 3P in

Impacts on 200 mb Wind Forecast (RMSE) vs **CNTRL**

- Significant degradation of forecast tropical upper-level wind field at Day 1, and slightly degraded at Day 3.
- 2POLAR is slightly worse than 3POLAR and 3PGPS relative to CNTRL.

 3PGPS expected impact low due to unchanged coverage in Tropics.

MEAN RMSE (m/s)	CNTRL	3POLA R	2POLA R	3PGPS
DAY 3 v CNTRL (top)	6.94	7.17	7.48	7.31
DAY 3 v ECMWF (bottom)	7.01	7.23	7.55	7.38

Southern hemisphere

Impacts on Day 3 200mb SH Wind Forecast (RMSE)

- Day 3 wind forecast impact is neutral for 3POLAR, and slightly negative for 2POLAR and 3PGPS compared to CNTRL analysis.
- Day 3 wind forecast impact is negative for 3POLAR, more significantly negative for 3PGPS, and most significantly negative for 2POLAR compared to ECMWF.
- Impacts similar, for NH Day 3 200 mb Wind Forecast.

Scorecard Reference: CNTRL Analysis

3PGPS vs CNTRL

3POLAR configuration with loss of GPSRO coverage *Polar Quasi redundancy lost and extra-tropical GSPRO degraded*

Significance for NWP

 Day 1-3 forecast remains degraded for all parameters (99.9% sig.)
 Day 5-6 forecast has

significant degradation (95-99.9% sig.)

 Impact is global (affecting both hemispheres)

Cumulative Forecast Score

Overall forecast quality based on multiple forecast parameters and forecast accuracy metrics

$$CFS = \alpha * C_{AC} + \beta * C_{RMSE}$$

Where CFS is the weighted average between Cumulative Anomaly Correlation (C_{AC}) score and Cumulative Root Mean Square Error score (C_{RMSE}). The weights α and β are set to 0.5 and,

$$C_{AC} = \sum_{i=1}^{np} \sum_{j=1}^{nlev} \sum_{k=1}^{nhr} \frac{\left(ac_{i,j,k} - \min_{k}\right)}{\left(\max_{k} - \min_{k}\right)} \qquad C_{RMSE} = \sum_{i=1}^{np} \sum_{j=1}^{nlev} \sum_{k=1}^{nhr} 1 - \frac{\left(rmse_{i,j,k} - \min_{k}\right)}{\left(\max_{k} - \min_{k}\right)}$$

Where,

max = maximum score at forecast time k, and **min** = minimum score at forecast time k, to account for degrading forecast skill at longer lead times.

					n 1			-
		Parameters		<u>Levels (mb)</u>		Fore	<u>cast (hr)</u>	
The narameters		• Height		• 250		• 24	• 120	
included are:	np	Temperature	nlev	• 500	nhr	• 48	• 144	
		 Vector Wind 		• 700		• 72	• 168	
				• 850		• 96		
							13	-

Overall Forecast Score Reference: CNTRL Analysis

OFS

<u>UKMO Index:</u> The UK Met Office NWP Index is based on global model forecast RMSE of mean sea level pressure, along with height and wind fields at selected atmospheric layers for leads times up to Day 5, normalized by the RMSE of the persistence forecast.

Cumulative Forecast Scores

1). The loss of a quasi-redundant polar satellite constellation (3POLAR) results in a significant degradation of overall forecast quality.

2). Both removal of PM polar satellite data and GPSRO extratropical data lower forecast scores further degrades forecast quality from 3POLAR.

3). Removal of the PM polar satellite data has the largest negative impact.

Briefing Agenda

Main points and conclusions

Main Points

- Overall forecast quality is degraded significantly when secondary polar data is removed (only 1 satellite in each Primary orbit).
- Overall forecast quality is further degraded when PM polar data are removed.
- Overall forecast quality is also degraded (but not as significantly) when the GPSRO coverage is altered (removal of extratropical observations).
- Tropical Cyclone track forecasts vary widely on a case by case basis (not shown) so statistical robustness is critical before interpreting results. Results suggest loss of redundancy and loss of PM orbit could lead to degraded performances.
- Caution should be exercised when deciding on removal of so called 'secondary' sensors (orbits are not redundant), as this will lead to degraded global performances
- Global forecast performance skills are more degraded from loss of the afternoon polar orbiting satellite than from the polar-coverage of COSMIC
- Future Work:
 - Extend period to obtain more robust Hurricane statistics
 - Investigate further the degradation due to removing secondary sensors

ENT OF CO					S DOOD No States
Mission	Launch	End of Life	Number of Satellites	Coverage	Obs per Day
Operational					
C/NOFS (CORISS)	2008-04-16	>2015	1	Tropical (13°)	200
COSMIC	2006-04-14	>2015	1x6	LEO (72°)	2500
GRACE (blackjack)	2002-03-17	>2015	1x2	LEO (89°)	150
Metop-A (GRAS)	2006-10-19	>2015	1	Polar	650
SAC-D (ROSA)	2011-06-10	>2016	1	Polar	650
Metop-B (GRAS)	2012-09-17	>2018	1	Polar	650
TerraSAR-X (IGOR)	2007-06-15	>2024	1	Polar	200
Not Used					
Megha-Tropiques (ROSA)	2011-10-12	> 2016	1	Tropical (10°)	650
OceanSat-2 (ROSA)	2009-09-23	> 2015	1	Polar	250
TanDEM-X (IGOR)	2010-06-21	> 2015	1	Polar	200
Planned					
SEOSAR (ROHPP)	≥ 2015	≥ 2020	1	Polar	250
COSMIC-2	≥ 2016	≥ 2023	2x6	Tropical (24°)	9000
GRACE-FO (Tri-G)	≥ 2017	≥ 2022	1x2	LEO (89°)	150
TSX-NG (IGOR)	≥ 2017	≥ 2024	1	Polar	200
COSMIC-2	≥ 2018	≥ 2025	2x6	LEO (72°)	9000
Metop-C (GRAS)	≥ 2018	≥ 2024	1	Polar	650
Metop-SG-A1 (RO)	≥ 2021	≥ 2043	1	Polar	1100
Metop-SG-B1 (RO)	≥ 2022	≥ 2043	1	Polar	1100
CLARREO-1A	> 2023	≥ 2028	1	Polar	1100
CLARREO-2A	> 2023	≥ 2028	1	Polar	1100

SATELLITE DATE

Tier 2: Likelihood Best/Worst Track Forecast

NOAA RIVERSIDE global science solutions

3PGPS shows significant degradation for NH/SH, but less negative • impact than 2POLAR (Day 5 average RMSE 1.5m/2.9m worse than **CNTRL** forecast)

•

21

Forecast Hour

Tier 2: 200 mb Tropical Wind (vs ECMWF)

Impacts on 200 mb Wind Forecast (RMSE) vs ECMWF

- Small but significant degradation of forecast tropical upper-level wind field at Day 1, and slightly degraded at Day 3.
- 2POLAR is slightly worse than 3POLAR and 3PGPS with respect to CNTRL.
- 3PGPS shows further degradation at longer lead times than 3POLAR.

What Results Will be Shown

Tiered Forecast Impact Analysis

Message: What is the "event driven" forecast implication for loss of satellite data?

Motivation for Observing System Experiments (part I)

Overarching Motivation

Assess impact of potential JPSS data gap on global NWP forecast performance.

Establish a baseline to assess added value of the data gap mitigation strategies being implemented by the JCSDA (e.g. AMVs, new sensors, cloudy radiance assimilation, Geo DA).

Cumulative Forecast Score Reference: CNTRL Analysis

Cumulative Anomaly Correlation Scores

- 3POLAR Removal of quasi-redundant polar data results in reduction of $\rm C_{AC}$
- 3PGPS Removal of quasi-redundant polar data plus additional loss of polar GPSRO further degrades C_{AC}
- 2POLAR Removal of quasi-redundant polar data plus additional loss of PM polar data results in more significant degradation of C_{AC} than loss of GPSRO

Normalized Cumulative RMSE Scores

Cumulative RMSE Scores

- 3POLAR Removal of quasi-redundant polar data results in significant reduction of C_{RMSE}
- 3PGPS / 2POLAR Further removal of the GPSRO observations or the afternoon polar observations has similar degradation as shown with C_{AC} score.

Temperature Profile vs Radiosonde

Impacts on Day 1-2 Temperature Forecasts

- No impact on temperature forecast when compared to radiosonde over North America for any level of Global Observing System degradation.
- Statistics are similar on a global scale.

Water Vapor Profile vs Radiosonde

Impacts on Day 1-2 Specific Humidity Forecasts

- Small negative impact (increased negative bias) for 2POLAR and 3POLAR specific humidity forecasts (1%) in lower troposphere over North America.
- Statistics are neutral on a global scale.

CONUS Precipitation Scores Reference: Rain Gauge/Radar

12-36 hr Forecast Impact

- Equitable Threat Score shows no significant impact with loss of Polar/GPSRO coverage for precipitation events < 75 mm/24hr.
- Bias Score shows no significant impact with loss of Polar/GPSRO coverage for precipitation events < 75 mm/24hr.

Equitable Threat and Bias Scores 36-60hr Forecast

36-60 hr Forecast Impact

- Equitable Threat Score shows slightly less predictability with loss of Polar/GPSRO coverage for precipitation events < 2 mm/24hr.
- Bias Score shows slight under-prediction of precipitation event intensity around 10-15 mm/24hr for 2POLAR, but not significant.

Met Office new global NWP index

- Skill score:
- $S = 1 r_f^2 / r_p^2$ - $r_f = rms$ forecast error
 - $r_{p} = rms$ persistence error
- Weighted as table \rightarrow S_{mean}
- N = $(1 S_{mean})^{-\frac{1}{2}}$
- Index = $100 \times N / N_0$
- N_0 = value on 31 March 2012
- April 2013 value = 101.49
- 1% reduction in r.m.s. error
 → 1% increase in Index

Wei	ghts	Forecast period							
	5	T+12 – T+72	T+96 & T+120						
	PMSL	3.2	6.4						
NH	H500	1.2	2.4						
	W250	1.2	2.4						
тр	W850	1.0	2.0						
	W250	0.6	1.2						
	PMSL	1.6	3.2						
SH	H500	0.6	1.2						
	W250	0.6	1.2						

The UK Met Office NWP Index is based on global model forecast RMSE of mean sea level pressure, along with height and wind fields at selected atmospheric layers for leads times up to Day 5, normalized by the RMSE of the persistence forecast. The forecast skill score for particular parameters or regions can be weighted depending on their importance: In this case they are equally weighted.

Scorecard Reference: ECMWF Analysis

3PGPS vs CNTRL

3POLAR configuration with loss of GPSRO coverage *Polar Quasi redundancy lost and extra-tropical GSPRO degraded*

Significance for NWP

Day 1-3 forecast remains degraded for most parameters (99.9% sig.)
Day 5-6 forecast has significant degradation (95-99.9% sig.)
Impact is global

(affecting both hemispheres)

					▼																					
		9	5%	Ś	999	%	99.	9%							95%	6	99	%	99.	.9%						
					G	lobe				1	N. Her	nisphe	ere			5	5. Hen	isphe	re			_	Tro	pics		
			Day 1	Day 3	Day 5	Day 6	Day 8	Day 10)Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10
		250hPa	•	•	•				•	•		•			•	•										
	Unights	500hPa	•	•	•				•	•					•	•										
	rieignis	700hPa	•	•	•	•			•	•					•	•										
		1000hPa		•											•	•										
		250hPa	•	•	•	•			•	•					•	•							N	ot		
10maly Correlation	Vector Wind	500hPa	•	•	•	•			•	•	+	•			•	•						_		01	_	- 1
		850hPa	•	•	•	•			•	•					•	•	+					R	ele	var	۱t	- 1
		250hPa	•	•	•	•			•	•					•	•	•									- 1
	Temp	500hPa	•	•	•				•	•	-	•			•	•										- 1
		850hPa		•	•	•						•			•	•	•	+								
	MSLP	MSL		•						•		•			•	•										- 1
		10hPa	•	•	•	•			•	•	•	•			•	•	•	•			•	•	•	•		
		20hPa	•	•	•	•			•	•	•	•			•	•	•	•				•	•	•		
		50hPa	•	•	•	•			•	•	•	•			•	•	•									
		100hPa	►	•	•	•			•	•	•	•			•	•	•				•					
	Heights	200hPa	►	•	•	•			•	•	•	•			•	•	•				•					
		500hPa	•	•	•	•			•	•	•				•	•					•					
		700hPa	•	•	•	•				•					•	•										
		850hPa		•	•	•				•	-	•			•	•										
		1000hPa		•	•	•						•				•										
		10hPa	•	•	•	•			•		•	•			•	•	•	•			•	•	•			
		20hPa	•	•	•	•			•						•	•	•	•			•					
		50hPa	•	•	•				•	•					•	•	•				•	•				
		100hPa	•	•	•	•			•	•	•	•			•	•	•				•	•				
RMSE	Vector Wind	200hPa	•	•	•	•			•	•	•				•	•	•				•	•	•	•		
		500hPa	•	•	•	•			•	•	•	•			•	•	•				•	•	•			
		700hPa	•	•	•	•			•	•	-	•			•	•		-			•	•	•			
		850hPa	•	•	•	•			•	•	•				•	•	•	•			•	•	•	•		
		1000hPa	•	•	•	•			•	•					•	•	•	•			•	٩	•			
		10hPa	•	•	•	•			•	•	•	•			•	•	•	•			•	•	•	•		
		20hPa	•	•	•	•		L	•						•	•	•	•			•	•	•	•		
		50hPa	•	•	•	•			•	•	•	•			•	•	•	•			•	•	•	•		
		100hPa	•	•	•	•		L	•	•	•	•			•	•	•	•			•					
	Temp	200hPa	•	•	•	•			•	•	•	•			•	•					•					
		500hPa	•	•	•				•	•	•	•			•	•					•					
		700hPa	•	•	•	•			•	•	•	•			•	•	•				•					
		850hPa	•	•	•	•				•	•	•			•	•	•	•								
		1000hPa	•	•	•	•			•	•					•	•	•				•	•	•	•		

Worse than CNTRL No Significance Better than CNTRL

500mb Height Forecast RMSE (vs CNTRL)

MEAN RMSE (m)	CNTRL	3POLAR	2POLAR	3PGPS
NH (top)	35.72	36.68	37.75	37.25
SH (bottom)	59.90	61.11	64.26	62.74

500mb Height RMSE vs Forecast Time

Northern Hemisphere Dieoff (left)

Main Points

- 3POLAR impact mostly neutral except for NH Day 3/4
- 2POLAR 500mb Height forecast shows significant degradation for NH/SH • (Day 5 average RMSE: 2m/4.3m worse than CNTRL forecast)
- 3PGPS shows significant degradation for NH/SH, but less negative impact than 2POLAR (Day 5 average RMSE 1.75m/2.8m worse than **CNTRL** forecast)

Hurricane Statistics Track Error

Hurricane Track Error AL/EP Basins 20140522-20140807

• 3PGPS performs similar to CNTRL, but is 6 nm degraded at 72 hours.

• Error bars (±1 Standard Deviation) illustrate that degradation from experiments is not statistically significant

32

Where

score_{i,i} is

Hurricane Track Performance

Cumulative Track Forecast Score Normalized to the mean CNTRL track error

$$TFS_{Exp} = \frac{\sum_{i=1}^{nfcsts \ nhr} score_{i,j}}{totalFcsts}$$

e.score_{i,j} is $Score = 0.5 - \frac{(err_{i,j} - mean_j)}{(max_j - mean_j)} * 0.5$ for $err_{i,j} > mean_j$ and

 $(mean_i - \min_i)$

mean_j is the mean track error of the CNTRL experiment at lead time *j; err_{i,j}* is the experiment track error for forecast *i* at lead time *j*, and *min_j* and *max_j* are the minimum and maximum track error from all experiments at lead time *j*.

for *err*_{*i*,*j*} < *mean*_{*j*},

Hurricane Track Performance

Cumulative Track Forecast Score Normalized to the mean CNTRL track error

Cumulative Tropical Cyclone Track Forecast Scores

- 1). Significant loss of track forecast skill with loss of quasi-redundant polar orbit coverage.
- 2). Loss of PM Primary (2POLAR) results in further degradation (esp. at 36, 48, 72 hours).
- 3). Alteration of GPSRO coverage improves track forecasts slightly over 3POLAR.