

Assimilation of Reconstructed Radiances

×102

Fiona Smith, Met Office, Exeter, UK 30 October 2015

- What are reconstructed radiances and why do we want to use them?
- How do reconstructed radiances compare in terms of O-B and 4D-Var increments
- Results of assimilation trials

What are reconstructed radiances, and why do we want to use them?

What are reconstructed radiances?

- Radiance spectra can be compressed for dissemination (or assimilation) using Principal Component techniques
 - 8000 channels down to 300 PC scores
 - Discarded components contain random noise
- Reconstructed radiances (RRs) are the spectra that you calculate from the PC scores
 - Spectra have lower random noise
 - But the noise that remains is heavily correlated

Why reconstructed radiances?

Met Office

- Reconstructed radiances should allow us to access
 - all of the signal
 - with reduced noise
 - in radiance space
 - a few hundred channels
- Also, PC-compression is the baseline dissemination for MTG-IRS

- The drawback is that instrument error correlation for RRs is significantly increased
- Yesterday we heard that there are other non-diagonal error terms that most centres have ignored until recently
- Consequently, channel selections used in NWP were generally made assuming diagonal error matrices
 - This assumption is very wrong for reconstructed radiances
 - We should have a new channel selection that takes account of these errors

Operational Channel Selection based on diagonal error term

138 IASI channels assimilated in 4D-Var

New Channel Selection based on Hollingsworth-Loennberg error covariance for Reconstructed Radiances

Channel Index

- Use the channel selection of 186 channels chosen as above
 - Only assimilating over sea, because there aren't enough window channels to do emissivity analysis
- Reconditioned R-matrix from Desroziers analysis, starting from Hollingsworth-Loennberg matrix
- Metop-A only (for technical reasons)
- RTTOV-9 forward model
 - No attempt to forward model the PC-compression, just the original radiance Jacobians are used.

How do reconstructed radiances compare in terms of O-B and 4D-Var increments

%

CLIMATE

www.metoffice.gov.uk

4D-Var analysis increment from single cycle - Theta Level 20

Raw_ - Level 20 STASH code: 20 Validity time: 15:00 on 21/08/2014 4 Level: 90N 45N 459 90S 90W 90E Mean: -1.5075E-01, RMS: 2.7243E-01, Max: 9.4657E-01, Min: -1.3531E+00 180 -0,924 -0,77 -0,616 -0.462 -0.308 -0.154 0.154 0.308 0.462 0.616 Û

Reconstructed

RR100_ - Level 20 STASH code: 4 Level: 20 Validity time: 15:00 on 21/08/2014

4D-Var analysis increments from single cycle - Qtot Level 20

-2.76e-4 -2.3e-4 -1.84e-4 -1.38e-4 -9.2e-5 -4.6e-5 0 4.6e-5 9.2e-5 1.38e-4 1.84e-4 2.1

Reconstructed

Assimilation Trials

Round 1: Full Observing System (IASI Metop-A only)

• Verification vs Raw Radiances

	New NWP Index	Verification of 198 Variables
RR New Chans	-0.055	51 Better 38 Worse
RR New Chans minus highest peaking	-0.651	26 Better 90 Worse

- Conclusion: the channel selection works well together: removing channels removes information
 - Much stronger effect than with Raw Radiances
- But a rather disappointing result overall!

Met Office

Verification table RR vs Raw

PERCENTAGE CHANGE IN RMSE max = 10 (grey = 2)NH PMSL • NH H500 NH W250 • Trop W250 Trop W850 • SH PMSL ٠ • SH H500 SH W250 • ٠ T+12 T+120 T+24 T+36 T+48 T+60 T+72 T+96

850hPa wind Verification vs Sonde (Tropics) RR vs Raw

Cases: + No Metop-B Control: modified mi-ab629 × RR Full (New R+bias)

var S>2σ

1-2 % increase (i.e. fit is worse in trial) for most channels

Background Fit to ATMS (left) and CrIS (right)

1-2 % decrease (i.e. fit is better in trial) for most channels

A mixed bag – some channels up to 5% improvement. Window channels worse fit?

Round 2: ATMS Baseline (+RO, Scatt, SatWind) (IASI Metop-A only)

Verification v. No IASI control

	New NWP Index
Raw Radiances	+0.363*
RR New Chans	+0.383

* Note this gave around +1 on the "Old Index" in 2007 with clear scenes and no error correlations on top of full system!

Verification of RR vs Raw

	New NWP Index	Verification of 198 Variables
RR v. Raw	+0.02	104 Better 52 Worse

Verification Table RR vs Raw (ATMS baseline)

Change in Background fit to ATMS RR v. Raw

var S>2σ

Up to 3.5% decrease (i.e. fit is better in trial) for almost all channels

RRs from operational channel selection

www.metoffice.gov.uk

- Have tried this before when we used a diagonal error covariance in 4D-Var
 - Neutral to slightly positive scores over-all because of reduced instrument noise
- Shouldn't really work with correlated errors
 - The error correlations for RRs are significantly different from raw radiances

Verification Table RR Orig Chans vs Raw

Verif vs Sonde

Northern Hemisphere

Height at T+24

- Basically neutral impact from reconstructed radiances
- Do see some benefit from dedicated RR channel selection
- Detrimental impact to Tropical W850
 - No window channels in dedicated selection
 - Lack of window channels is likely a result of high errors for window channels in Hollingsworth-Loennberg matrix
 - Want to try to fix this
- Greatest impact of PC compression is on longwave CO₂ channels, but errors overall greatest for water vapour channels

Principal Component Compression

Met Office based on EUMETSAT L1 PC Scores

$$\mathbf{y}_{\text{pc}} = \mathbf{L}^{\mathsf{T}} \mathbf{E}^{-1/2} \left(\mathbf{y}_{\text{chan}} - \mathbf{y}_{\text{mean}} \right)$$

- y_{chan} is the observation in channel space
- y_{pc} is the observation in PC space
- *npc* is the numper of retained PCs (290)
- L is the PC eigenvector matrix (size *nchan* x *npc*)
- E is the noise covariance matrix

 Note that here, the observation is noise-normalised but other norms are used when PCs are designed for assimilation rather than dissemination

Radiance Reconstruction based on EUMETSAT L1 PC Scores

Met Office

$$y_{rr} = y_{mean} + E^{1/2} L_{rr} y_{pc}$$
$$= y_{mean} + E^{1/2} L_{rr} L^{T}_{pc} E^{-1/2} (y_{chan} - y_{mean})$$

(You could work in noise-normalised space and omit the premultiplication by E^{1/2})

- The critical point is this:
- L^T_{pc} is size (*npc* x *nchan*)
- L_{rr} is size (*nrr* x *npc*)
- *nrr* <= *npc*

Transformation matrix from raw radiances to reconstructed

Verif vs Sonde

Southern Hemisphere

Height T+24

2.0

0.2

Is the reconditioning wiping out the benefit of the noise reduction? Matrix from Original Trial: Condition Number 100

Is the reconditioning wiping out the benefit of the noise reduction? Condition Number 1000

		NWP Index vs RR
1	RR New Chans – tighter errors OPS	+0.01
2	RR New Chans – tighter errors VAR + 1)	-0.879 *

* Stopped after a couple of weeks!