# All-sky assimilation of MHS and HIRS sounder radiances

Alan Geer<sup>1</sup>, Fabrizio Baordo<sup>2</sup>, Niels Bormann<sup>1</sup>, <u>Stephen English<sup>1</sup></u>

#### <sup>1</sup> ECMWF

<sup>2</sup> Now at Bureau of Meteorology, Australia

- All-sky assimilation at ECMWF (general overview)
- All-sky humidity sounder assimilation
- Conclusions



# All-sky assimilation

All-sky = direct assimilation of radiances in clear, cloudy and precipitating conditions.

- Observations assimilated operationally (ECMWF cycle 40r1)
  - Imager channels over ocean (SSMIS, TMI)
  - SSMI/S humidity sounding channels over ocean
- Developments towards next cycle (40r3 ~Oct 2014)
  - SSMI/S humidity sounding channels over land and sea ice
  - MHS humidity sounding channels over ocean, land and sea ice
  - AMSR2
- Longer term developments (41r1 ~ March 2015 and beyond...)
  - GPM, SAPHIR on Meghatropiques
  - HIRS, SEVIRI and IASI Infra-red all-sky assimilation (see also Migliorini, 9p07)



# All-sky assimilation

#### Difficulties

- Accuracy of non-linear model forecast of cloud and precipitation, particularly in convective situations
- Accuracy of forecast model's cloud and precipitation linearization in tangent-linear model in 4D-var
- Accuracy of the observation operator (scattering radiative transfer simulations)

#### Implementation

- Symmetric error models → if you can describe the observation error correctly, and the observations are unbiased, you can assimilate
- Improving accuracy of scattering radiative transfer → DDA scattering database



## Symmetric error models

- FG departure standard deviation is a function of the "symmetric cloud amount" – the average of observed and simulated cloud
- An error model is fitted to (or binned from) the FG departures
- Cloud predictors:
  - 37 GHz polarisation difference (imagers)
  - Scattering index (land, MHS)
  - LWP retrieval (AMSU-A)
  - Cloud clear TB (IASI)
- See Geer and Bauer (2011, QJRMS)







Improving accuracy of scattering radiative transfer

Liu (2008, BAMS) DDA scattering database

Implementation in RTTOV-SCATT: Geer and Baordo (2014, AMT)

Result: We can do allsky assimilation in convective areas at frequencies above 30 GHz for the first time



### Microwave clear-sky VS all-sky assimilation

#### Clear-sky MHS

- Clear-sky radiative transfer
- Assimilation over ocean, land and sea ice
- Cloud screening based on 150 GHz FG departure > 5K
- Assimilation over ocean, land and sea-ice (Di Tomaso et al., 2013)
- Constant 2 K observation error

#### All-sky MHS/SSMIS

- All-sky radiative transfer
- Assimilation over ocean, land and sea ice
- MHS: Symmetric error model based on 90 150 GHz scattering index over ocean and land; constant 2 K observation error over sea-ice
- **SSMIS**: Symmetric error model based on 37 GHz polarization difference over ocean; 90 150 GHz scattering index over land; constant 2 K observation error over sea-ice
- Addition of MHS scan positions 1-9 and 82-90 (not used in operations)



#### Assimilation experiments

- CONTROL = No MHS
  - Full observing system, including all-sky SSMIS F17/TMI, but no MHS
- Exp1 = Clear-sky MHS (no scan pos 1-9 and 82-90)
- Exp2 = Clear-sky MHS (including scan pos 1-9 and 82-90)
  - Only one season run
- Exp3 = All-sky MHS (including scan pos 1-9 and 82-90)
- MHS from Metop-A,B; NOAA-18,19
- T511 horizontal resolution
- 137 vertical levels
- 4D-Var 12 hour assimilation window
- ~ 3 months of period:

15 June - 31 July 2013 + 1 January - 10 February 2013



### Impact of swath edge MHS vs AII-sky



# Conclusions and perspectives

- Aim is to improve impact of water-vapour, cloud and precipitation sensitive channels
  - It has been shown MW humidity sounders have more impact when assimilated using the all-sky framework
  - Some of the benefit also comes from using the full MHS swath

| Microwave imagers              | well-established |
|--------------------------------|------------------|
| Microwave humidity sounders    | in transition    |
| Infrared water vapour channels | in development   |

- Results (not shown) for MW temperature sounders in allsky framework remain inconclusive.
- For the IR all-sky assimilation an affordable accurate RT model is urgently needed (see Migliorini 9.07).
  - Fast cloud overlap scheme for the IR: > 1 sub-columns

