

Study of biomass burning emissions with Aqua/AIRS and MetOp-A/IASI

Thibaud Thonat, Cyril Crevoisier, Noelle Scott, Alain Chédin, Raymond Armante, Laurent Crepeau

thibaud.thonat@lmd.polytechnique.fr

Laboratoire de Météorologie Dynamique (LMD) / CNRS / IPSL

http://ara.abct.lmd.polytechnique.fr

Contribution of IR sounders to the study of biomass burning emissions

Night-Day CO₂ from TOVS

Diurnal cycle of fires

Diurnal cycle of fires in the surface and equator crosstime of NOAA-10

Convection of fires emissions in the troposphere

Simulation of CO₂ fire plumes emissions

Contribution of IR sounders to the study of biomass burning emissions

Diurnal cycle of fires

Diurnal cycle of fires in the surface and equator crosstime of IASI and AIRS

Contribution of AIRS and IASI to the study of biomass burning emissions

- Fire emissions:
 - •90% CO₂ (flamming phase),
 - •9% CO (smoldering phase),
 - •<1% CH₄, and other trace gases
- At LMD, we retrieve CO₂ and CO from AIRS and IASI, and CH₄ from IASI.
- AIRS and IASI give access to 4 points a day: 1:30, 9:30, 13:30, 21:30
- → Study of the diurnal cycle of the emissions and the different phases of the combustion.

Diurnal cycle of fires

Diurnal cycle of fires in the surface and equator crosstime of IASI and AIRS

Giglio, 2006

Contribution of AIRS and IASI to the study of biomass burning emissions

- Fire emissions:
 - •90% CO₂ (flamming phase),
 - •9% CO (smoldering phase),
 - •<1% CH₄, and other trace gases
- At LMD, we retrieve CO₂ and CO from AIRS and IASI, and CH₄ from IASI.
- AIRS and IASI give access to 4 points a day: 1:30, 9:30, 13:30, 21:30
- → Study of the diurnal cycle of the emissions and the different phases of the combustion.

The fire signature on CO₂ and CH₄ is quite weak whereas CO is a well-known proxy of fire emissions. That's why we focus on CO to study the diurnal cycle of fire emissions.

Retrieval of CO, CO₂ and CH₄ from AIRS/IASI

- ■For CO₂ (low signal) and for CH₄ (interferences from other species), we use:
 - -Non linear inference scheme based on neural networks [Crevoisier et al., 2004, 2009a/b].
 - -CO₂/CH₄ and T(p) are intimately correlated in the IR.
 - → Use of IR (IASI/AIRS) and MW (AMSU) observations to decorrelate T from gas variations.
 - -The decorrelation between T/GHG is easier to do in the tropics.
 - \Rightarrow a better precision is expected there.
- ■For CO, we use a double differential approach [*Thonat et al.*, sub.].
- •We retrieve a mid or uppertropospheric content:
- in clear sky only (no clouds, no aerosols)
- in day and night, over land and over sea

We have now ~4 years (July 2007-June 2011) of monthly averaged tropospheric integrated content of CO₂, CO and CH₄ from IASI, and also CO and CO₂ from AIRS.

AIRS and IASI characteristics - CO

Sensitivities of AIRS and IASI channels to atmospheric and surface perturbations

(from LMD 4A radiative transfer model, based on the GEISA spectroscopic database and using the TIGR atmospheric dataset)

Description of the CO retrieval method

Precision: 2.5 ppbv (~3 %)

Description of the CO retrieval method

AIRS and IASI CO

Monthly means of mid-tropospheric CO (July 2007 – June 2011)

AIRS 1:30 IASI 9:30

AIRS 13:30 IASI 21:30

Results from IASI over South America (2008-2010)

Fire season (July-Nov)

Effects on CO and CO₂ emissions of the 2010 severe drought in Amazonia

Spatio-temporal evolution averaged over Amazonia

- Very good agreement between the diurnal variations of CO and CO₂ and fires
- These diurnal cycles are of opposite signs: more CO for the daytime observation; more CO₂ for the nighttime observation.
- This might be due to the different combustion phases (smoldering vs. flamming), and to the different parts of the troposphere seen for each gas.

Conclusion

We have retrieved tropospheric integrated content of CO₂, CO and CH₄ from MetOp-A/IASI and CO₂ and CO from Aqua/AIRS observations, from July 2007 to June 2011. We have used these retrievals to study the link between CO, CO₂ and biomass burning emissions.

These results have highlighted:

- the interest of coupling AIRS (1:30, 13:30) and IASI (9:30, 21:30) observations to study the diurnal cycle of CO and the interest of retrieving simultaneously CO, CO₂ and CH₄ from IASI.
- the diurnal cycle of tropospheric CO and CO₂ over the tropical regions
- a temporal and spatial variation of this signal, in agreement with fire activity
- however, the diurnal cycles of CO and CO₂ are of opposite signs, which gives complementary information on the phases of combustion.

Perspectives of this work:

- extension to NPP/CrIS and MetOp-B/IASI observations
- study of the vertical transport of gases emitted by fires
- further study of the correlations between CO₂, CO and CH₄

Annex

Daily Variations of CO

More CO seen by day than by night

CO is mainly emitted in the smoldering phase of combustion :

- low-temperature process
- burns the organic layer, after the aboveground biomass was consumed in the daytime releasing mostly CO_2
 - conditions of higher moisture

CO is emitted mostly at night and trapped into the boundary layer until the next morning, and then uplifted by convection

