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The IASI infrared spectrum from a standard midlatitude profile

➢ IASI's objectives are to provide vertical temperature and humidity profiles for NWP models and monitor climate variables (clouds, 
surface properties, aerosols, greenhouse gases). It is also an opportunity to study the chemical composition of the atmosphere
→ ~ 20 trace gases (CO2, CH4, O3, CO, N2O, NH3, …)

➢ 123 IASI channels were assimilated into operational NWP global model ARPEGE at Météo-France (only 1.5% of the full spectrum) at the 
beginning of my PhD 
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➢ Why to choose the ozone molecule? 

➔ Ozone has a significant impact on the temperature fields of the model through the ozone-radiation interaction [Cariolle and Morcrette, 2006]. 

➢ Why to use IASI ozone-sensitive channels to improve thermodynamic analyses?

➔ IASI ozone-sensitive channels are also sensitive to temperature, humidity and surface temperature and can provide additional information to 
improve analysis. [Coopmann et al., 2018].

➢ Why to use realistic ozone fields?

➔ The use of 3D realistic ozone fields instead of a constant profile (currently used in ARPEGE) improves the simulation of IASI [Coopmann et al., 
2018], HIRS [Derber and Wu, 1998] or AMSU-B [John and Buehler, 2004] observations, for example.

➢ Why to couple the ARPEGE and MOCAGE models for ozone?

➔ The assimilation of ozone-sensitive observations by coupling meteorological and chemical models makes it possible to improve analyses of 
temperature and humidity (1D-Var study) [Coopmann et al., 2018], temperature and wind (4D-Var study) [Allen et al., 2018] or to reduce 
wind bias in the stratosphere (4D-Var study) [Semane et al., 2009].
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Step 1: Use of realistic ozone fields in the observation operator 4

➢ REF experiment: use of the constant ozone profile in the observation operator 

➢ EXP experiment: use of MOCAGE ozone fields in the observation operator

➢ Average of the differences in temperature, relative humidity and zonal wind component analysis between the EXP and 
REF experiments from July 12 to September 10, 2016.

Impact of using realistic ozone fields on meteorological analyses
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 Temperature [K]  Relative Humidity [%]  Zonal wind component [m.s-1]

ΔT(xa
EXP

 – xa
REF

) → min : - 2,0 K max : 2,2 K ΔHR(xa
EXP

 – xa
REF

) → min : - 2,1 % max : 2,5 % ΔU(xa
EXP

 – xa
REF

) → min : - 1,6 m.s-1 max : 0,3 m.s-1

➢ REF experiment: use of the constant ozone profile in the observation operator 

➢ EXP experiment: use of MOCAGE ozone fields in the observation operator

➢ Average of the differences in temperature, relative humidity and zonal wind component analysis between the EXP and 
REF experiments from July 12 to September 10, 2016.
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➢ Normalized differences of Root Mean Square Errors between EXP and REF forecast by step w.r.t. pressure from July 12 to 
September 10, 2016 

Impact of using realistic ozone fields on weather forecasts
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Method of the new selection of IASI ozone-sensitive channels described in [Coopmann et al., 2019 in review]:

Differences from the selection made by [Collard et al., 2007]:

Collard’s selection New selection

Selection of the most informative channels in ozone Selection of the most informative channels in 
temperature, humidity, surface temperature and ozone

Use of a diagonal observation-error covariance matrix 
 

Use of a full and diagnosed observation-error 
covariance matrix  
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Method of the new selection of IASI ozone-sensitive channels described in [Coopmann et al., 2019 in review]:

Differences from the selection made by [Collard et al., 2007]:
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Step 2: Addition of IASI ozone-sensitive channels 9

 Temperature [K]  Relative Humidity [%]  Zonal wind component [m.s-1]

ΔT(xa
EXP

 – xa
REF

) → min : - 0,2 K max : 0,1 K ΔHR(xa
EXP

 – xa
REF

) → min : - 1,4 % max : 0,9 % ΔU(xa
EXP

 – xa
REF

) → min : - 0,1 m.s-1 max : 0,3 m.s-1
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➢ EXP experiment: (reference) use of MOCAGE ozone fields in the observation operator

➢ EXP15 experiment: use of MOCAGE ozone fields in the observation operator + 15 ozone-sensitive channels

➢ Average of the differences in temperature, relative humidity and zonal wind component analysis between the EXP15 and 
EXP experiments from July 12 to August 31, 2016.

Impacts of assimilating ozone-sensitive IASI channels on meteorological analyses
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Improvement Statistically significant with 95 % of confidence (Bootstrap)Degradation
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➢ Normalized differences of Root Mean Square Errors between EXP15 and EXP forecast by step w.r.t. pressure from July 12 
to August 31, 2016 

Impacts of assimilating ozone-sensitive IASI channels on weather forecasts
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 Temperature [K]  Relative Humidity [%]  Zonal wind component [m.s-1]

ΔT(xa
EXP

 – xa
REF

) → min : - 1,1 K max : 0,2 K ΔHR(xa
EXP

 – xa
REF

) → min : - 2,8 % max : 4,1 % ΔU(xa
EXP

 – xa
REF

) → min : - 1,7 m.s-1 max : 1,4 m.s-1

Impacts of ozone analysis on meteorological analyses?
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➢ EXP15 experiment: (reference) use of MOCAGE ozone fields in the observation operator +15 O3 channels

➢ EXP15O3 experiment: use of MOCAGE ozone fields in the observation operator +15 O3 channels + analyze ozone in 
addition to other variables 

➢ Average of the differences in temperature, relative humidity and zonal wind component analysis between the EXP15 and 
EXP experiments from 12 to 30 July 2016.
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Impacts of ozone analysis on weather forecasts?
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Improvement Degradation

➢ Experience in progress but we can already look at the impacts on forecast bias between EXP15O3 and EXP15 from 12 to 
30 July, 2016 
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➢ Step 1: The use of realistic ozone fields from MOCAGE has a positive impact on the assimilation of observations and 
analyses and makes it possible to improve overall forecasts of temperature (4 %), humidity (3 %) and wind (3 %).

➢ Step 2: The assimilation of 15 additional IASI ozone-sensitive channels has very small impacts on the analyses but this 
improves the temperature, humidity and wind forecasts by about 0.5 %.

➢ Step 3: Analyzing ozone in 4D-Var allows to distribute the information and to give an additional degree of freedom to the 
other variables with a strong impact on the analyses and a decrease in the bias of forecasts mainly in temperature and 
humidity.

➢ This coupling between the ARPEGE and MOCAGE models, by ozone, makes it possible to better assimilate 
infrared satellite observations as well as other observations with positive impacts on analyses and 
improvements in weather forecasts.

➢ Improvements through the assimilation of profiles, total or partial ozone columns retrieved from satellite instruments 
(GOME, IMO, MLS, SBUV-2, OMPS, ...).

➢ Assimilation of other instruments: CrIS, AIRS, HIRAS (polar), SEVIRI, AHI, GIIRS (geostationary).

➢ Assimilation of new instruments: IASI-NG (polar), IRS (geostationary).
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