Inter-comparison of CRTM and RTTOV in NCEP Global Model
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Work Plan

= For all cross-comparisons between CRTM and RTTOV, =Work with CRTM team to assess the impact of

- CRTM RTTOV (RTTOV-SCATT) investigate to understand and explain the differences. cloud fraction on simulated BTs and data

Validation of Multiple-scattering for Clouds & Precipitation

Advanced Doubling-Adding (ADA) Scheme Delta-Eddington Approximation = MW Jacobian comparison for precipitating clouds assimilation.
Use Gaussian quadrature to calculate Approximate the radiance vector and phase =BT and Jacobians comparison for more MW = Work with CRTM team to explore the
Algorithm radiative transfer for specific up-welling and function to the first order so that only the instruments (SSMIS, ATMS, MHS) development of an emissivity model when
dqwn-welllng zenith directions viewing/satellite zenith angle is needed = Perform cross validation of IR instruments for both clear  Performing multi-stream calculations.
(Liu and Weng, 2006) (Bauer, 2002) and cloudy calculations. = Discuss with the modeling group possibilities for
- Legend_re polynomial e_xpansion of the : Approgim_ate_phas.e fu_nction to the first = Experiment with the Discrete Dipole Approximation better prediction of sea ice, clou_d fractio_n,
scattering phase function order in viewing direction (DDA) in RTTOV and compare with Mie approach hydrometeor types_ and_clqud _mlcrophysms
Scattering E Pr_e-calculated Iooku_p table:_ 0 Pr.e-calculated Iookup table:_ (Geer and Baordo, 2014). parameters (e.g. size distribution).
. Mie theory for spherical particle Mie theory for spherical particle and
Properties . . . .
DDA for non-spherical particle (underway) DDA for non-spherical particle Ref
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= Deblonde, G., and S. J. English, 2000: Evaluation of the FASTEM-2 microwave oceanic surface emissivity model. Proc. Int. TOVS Study Conf., Budapest, Hungry
Cloud Types Water, ice, rain, SNOW, graupel, and hall water, ice rain and snow = Geer, A., Bauer P., O’Dell C., 2009: A revised cloud overlap scheme for fast microwave radiative transfer in rain and cloud. J. Appl. Meteor. Climatol., 48, 2257-2270
= Geer A., F. Baordo, 2014: “Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies”, Atmos. Meas. Tech. Discuss. 1749-1805
Cloud Cover No handling yet Cloud fraction profiles = Kazumori, M. and S.J. English, 2015: Use of the ocean surface wind direction signal in microwave radiance assimilation, Q.J.Royal Met. Soc., vol. 141, No. 689
Surface FASTEM-6 without reflection correction FASTEM-6 with reflection correction = Liu, Q., and F. Weng, 2006: advanced doubling-adding method for radiative transfer in planetary atmosphere. J. Atmos, Sci., 63, 3459-3465

= Xu, K. M., and D. A. Randall, 1996: A semi-empirical cloudiness parameterization for use in climate models. J. Atmos., Sci., 53, 3084-3102






