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It is well known that hyper-spectral infrared radiances, like IASI measurements, can be represented by a small number of principal component (PC) scores, with 
almost no loss of atmospheric information. The same is true for a small subset of radiances, reconstructed from these PC scores, provided that the subset is 
selected in such a way that the corresponding sub-matrix of the PC's is invertible. We show how to make this selection and efficiently extract the atmospheric 
information in the measurements by optimal estimation retrieval based on a small subset of reconstructed radiances. A second reconstruction, using forward 
model PC's, is applied to the radiances in order to suppress instrument artefacts, which, although being small, do otherwise affect the retrievals negatively. 
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Principal component compression of hyper-spectral 
infrared observations works by projecting measured 
radiances onto a lower dimensional linear subspace. 
The part of the observations which is orthogonal to 
this subspace consists mainly of random instrument 
noise and only a negligible amount of atmospheric 
signal and is discarded. This subspace (the signal 
subspace) is spanned by a truncated set of 
eigenvectors of the observation covariance matrix. 
Similarly the forward model subspace, for a given 
forward model, can be determined from a large set 
of representative forward model spectra. For some 
forward models, the so called PC forward models, 
the restriction to a lower dimensional subset is 
even guaranteed by construction. We can analyse 
the similarities and differences between the IASI 
observation and RTTOV forward model subspaces 
by computing the canonical angles and 
corresponding directions between the two. In this 
way features found in the IASI observations which 
are originating from instrument artefacts and are 
not seen in the forward model spectra can be 
identified and removed if desired. Instrument 
artefacts can be observed directly in plots of some 
of the PC scores (which, as we recall, are nothing 
but linear combinations of the measured 
radiances). Many present a cool zebra-striped look, 
which is not believed to correspond to anything in 
the observed geo-physics. These PC scores present 
a high degree of correlation with the IASI cube 
corner direction, which further highlights the 
instrument artefact origin of these patterns. It is 
conjectured that they are related  to the so called 
Ghost-effect, but the day/night difference has 
hitherto not been explained. Another easily 
observed artefact is the non-uniform scene ILS 
effect in inhomogeneous fields of view. The affected 
PCs typically have a high sensitivity to spectral 
shift. PCs affected by instrument artefacts can also 
be identified by studying differences in statistics 
between the four detectors both in terms of mean 
and standard deviation as well as spatial 
correlation. But instead of identifying individual  
directions we obtain a pair of new bi-orthogonal 
bases for the signal and forward model subspaces, 
in which similar directions in the two spaces are 
“moved forward”. Truncation can be used to filter 
out components of the measurements which are 
not found in the forward model space and vice 
versa. For our retrievals we keep 62 basis vectors 
in Band 1 and 77 basis vectors in Band 2 
(corresponding to canonical angles lower than 60 
degrees). 

Ruminations on IASI-A vs. IASI-B 
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Channel selection for reconstructed radiances and equivalence to PC scores 

Compression works by suppressing redundant data – no redundancy, no compression. 
Random noise has no redundancy. Hyper-spectral infrared satellite measurements can be 
seen as a sum of atmospheric signal, which typically has a high degree of spectral 
correlation (hence redundancy), and random noise originating from measurement errors. 
Since this second part can’t be compressed, the overall compression rate which can be 
achieved for hyper-spectral infrared satellite measurements is limited, unless some of the 
random noise is removed. One way to do so is called quantisation and consists in rounding 
the radiances to the nearest multiple of a predefined quantity which depends on the 
standard deviation of the noise in each channel. This approach makes no attempt to 
distinguish between signal and noise, but since the magnitude of the signal is typically 
higher than the magnitude of the noise, the relative effect is typically highest for the noise. 
It is perfectly possible for the quantisation to remove weak but spectrally correlated 
atmospheric signal which could have been detected and retained with principal component 
(PC) analysis. Therefore quantisation should never ever be applied prior to PC compression.  
 

PC compression works by projecting the measurements onto the subspace generated by 
the leading eigenvectors of the noise normalised measurement covariance matrix. The 
noise normalisation is essential, because it ensures that the random noise is equally 
distributed among all possible directions and therefore makes eigenvector directions 
carrying even a very weak signal in addition to the noise distinguishable from directions 
carrying only noise. This is true, even in the unlikely case that a signal is not spectrally 
correlated, in other words if the signal only affects a single channel. In practice what would 
happen in such a case is that the unit vector corresponding to this channel would be 
included in the subspace spanned by the leading eigenvectors. The signal would therefore 
be preserved, but there would be no noise reduction for this particular channel.  
It comes as a surprise for many that a single set of eigenvectors is suitable to serve, 
equally well, as a basis for the representation of measurements over Antarctica and 
Australia (for example). The lack of regional biases is easy to verify by examination of the 
residuals. (“The residuals” is the term for the difference between the measured radiances 
and the radiances reconstructed from the compressed representation).  

While PC compression with proper noise normalisation is capable of retaining both very 
weak and spectrally narrow features, it will not retain features which have not been 
included in the training set. Instead, measurements with such previously unseen spectral 
features will be identified by an anomalous residual.  
 
Although the usefulness could be debated, some users have expressed a preference for 
“full radiances”. One way of delivering this, originally suggested in a study by Tony Lee, is 
to disseminate quantised (and Huffman encoded) residuals in addition to the truncated set 
of PC scores. It is argued here that the additional dissemination of the complementary PC 
scores would be a better option for getting “full radiances” to the users, for two reasons: 1) 
the residuals are guaranteed to fit in a subspace of dimension equal to the number of 
channels minus the number of scores, so it is wasteful to represent them in channel -
coordinates, and more importantly 2) the quantisation of the residuals is likely to destroy 
weak but spectrally correlated signal which could possibly be retained in the 
complementary PC scores even when these are also quantised.  

The signal and model subspaces 
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ÊF and ÊS are bi-orthogonal bases for the two 
subspaces.  
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New bases for the signal and forward model spaces, 
in which similar directions are identified and ordered 
according to their degree of similarity 

It is well accepted that IASI spectra can be represented by a small number 
of PC scores with only a minor loss of information. The same is true about 
the representation by a small number of reconstructed radiances. In fact it 
is easy to go from one representation to the other provided that the 
channel subset of reconstructed radiances is chosen such that the 
corresponding sub-matrix of the eigenvector matrix is non-singular. (That 
this is always possible follows directly from the fundamental theorem of 
linear algebra.)  In order to make the transformation from a subset of 
reconstructed radiances to PC scores numerically stable and be able to 
preserve all the information available in the PC scores, it is important that 
the channel subset is chosen such that the condition number of this sub-
matrix is kept low. In practice the condition number is heuristically 
minimized by choosing linearly independent rows of the eigenvector matrix 
with either Gaussian elimination or a Gram-Schmidt process, in which the 
pivot element in each step is chosen to be numerically large. 
 
As illustrated to the right, in the context of 1DVar or assimilation, the cost 
function obtained with both representations are identical, provided that the 
two forward models are the same, in the sense that the forward modelled 
PC scores expanded to radiances via pre-multiplication with      agree with 
the forward modelled radiances. In this case the matrix to be inverted is a 
sub-matrix of the observation error covariance matrix in reconstructed 
radiance space, EETSyEET  
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In this context, it might therefore be advantageous to base the channel 
selection on the minimization of the condition number of this sub-matrix. 
This is equivalent to selecting s linearly independent rows of the matrix 
square root EETSy

1/2  (with large pivot elements).  The use of reconstructed 
radiances seem to be easier to implement than PC scores and has the big 
advantage that screening of channels affected by un-modelled  features like 
trace gases or clouds is feasible. In practise it has also proven to work well, 
but care must be taken to ensure that numerical issues related to the 
poorer condition of the observation error covariance matrix are avoided. 

The technique of canonical angles between subspaces, which was used 
above to isolate instrument artefacts, can also be used to analyse the 
differences and similarities of measurements from IASI-A and IASI-B. For 
the plots below we created two independent eigenvector representations of 
the signal spaces of the two instruments and looked at the canonical angles 
between these two subspaces. It is interesting to note that the 10 least 
similar directions (which are almost orthogonal) are mainly restricted to 
different spectral regions. This is a consequence of the different noise 
characteristics of the two instruments and could be used for additional noise 
(and possibly instrument artefact to the extend that the directions are 
orthogonal) filtering without relying on any particular forward model.  
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