

Towards the assimilation of cloudy radiances

N. Fourrié, M. Dahoui*¶ and F. Rabier

CNRM/GAME

* Moroccan Meteo

[¶]PhD defended on 19 June 2006 in Toulouse, France

Status of the AIRS clear sky radiances assimilation at METEO France

with contrib of Thomas Auligne, D. Lacroix, P. Poli, V. Guidard F. Rabier, N. Fourrié M. Sczczech-Gajewska, H. Zhang, A. Babqiqi, F. Karbou

In operations

- 20 stratospheric channels operationaly assimilated since 19 september 2006 (over land and sea)
 - Positive impact in the stratosphere in the Tropics and in SH for T and Q
- 70 other channels are monitored

Current research works

- Bias correction (depending on the latitude and the fov)
- Assimilation of tropospheric channels
- Assimilation over land : surface emissivity computation

Preparation of the assimilation of cloudy radiances

- AIRS 4D-Var assimilation in the French ARPEGE model
- Dahoui et al, QJRMS (2005): study of various cloud detection scheme for AIRS
 - 4 cloud detection schemes evaluated
 - Evaluation with MODIS observations
 - Linearity of a diagnostic cloud scheme
- 3 methods implemented for cloudy radiance assimilation:
 - CO2slicing
 - CO2slicing adjusted with 1DVar
 - Diagnostic scheme

CO2slicing methods

Chahine 1974, Menzel et al 1983

 CO2 slicing is used for the retrieval of Ptop and cloud fraction.

$$F_{k,p} = \frac{(R_{clr}^{k} - R_{obs}^{k})}{(R_{clr}^{K_{ref}} - R_{obs}^{K_{ref}})} - \frac{(R_{clr}^{k} - R_{cld}^{k,p})}{(R_{clr}^{K_{ref}} - R_{cld}^{k_{ref},p})} \longrightarrow p_{c,k}$$

$$p_{c} = \frac{\sum_{k} p_{c,k} w_{k}^{2}}{\sum_{k} w_{k}^{2}} \qquad N_{\varepsilon} = \frac{(R_{clr}^{k_{ref}} - R_{obs}^{k_{ref}})}{R_{clr}^{k_{ref}} - R_{cld}^{k_{ref}}}$$

Variant: 1DVar used to adjust the Ptop and cloud fraction

Implementation of the CO2slicing in ARPEGE

« Diagnostic » method

- ★ Use of simplified cloud diagnostic scheme from ARPEGE for large scale stratiform clouds (QI, qi cc)
- * Screening
 - ★ Cloud detection and characterization
- * RTTOVCLD
- cloud variables into control variable

Set up of the experiments

- Ten days period (from 8 to 17 june 2005)
- 102 channels assimilated per field of view over sea
- For cloudy pixels, assimilation only if:
 - |Lat |>40°
 - Low clouds: 600 hPa<Ptop<950 hPa
- 3 exp for cloudy radiances
 - Diagnostic scheme
 - CO2slicing
 - CO2slicing + adjustment with 1DVar
 - Same bias correction and observation errors for cloudy and clear pixels.
- Comparison with
 - Reference: clear pixel with CO2 slicing.
 - « ECMWF » experiment: assimilation of the clear channels

Impact on the assimilated observations

• For 8/6/2005:

Ехр	Observations:	Channels:
	Clear/cloud/total	Clear/cloudy/total
Reference	1033/ 0 /1033	103561 / 0 /103561
Diag	994 / 515 /1509	99713 / 15622 /115335
CO2	985 / 549 /1534	98812 / 34094 /132906
CO2+1DVar	966 / 750 /1716	96891 / 49101 /145992
ECMWF	1696/ 0 /1696	106319 / 0 /106319

- Background departure similar for the other observation types
- Weak increase of the assimilated AMSU-B number in the CO2 and the CO2 +1D experiments.

Background and analysis departures for AIRS observations

Cloudy observations

Impact on the forecasts

- •Weak impact in the forecast, mostly in southern hemisphere.
- Non significant impact

Exp-REF RMS error vs RS for Geopotential

Conclusions

- Feasibility study of the assimilation of cloudy radiances in the ARPEGE model over a ten day period
- 3 methods were tested for the 4D-Var of ARPEGE and compared with the clear sky radiance assimilation (ARPEGE and ECMWF)
- Small number of cloudy assimilated observations
- Small impact on the analysis and on the forecast

Future work

- Extension to the other level of clouds and a longer period
- Observation errors for cloudy pixels, bias correction
- Observation correlation
- Cloud top pressure and cloud cover included in the 4D-Var minimisation