Bias Correction of Satellite Data in GRAPES-VAR

Wei Han

Chinese Academy of Meteorological Sciences, CMA ITSC15, 2006-10, Italy

MAIN COMPONENTS OF CHINESE NEW GENERATION NWP SYSTEM

DATA USAGE OF GRAPES-VAR

ATOVS FROM REGIONAL TO GLOBAL SINCE OCT. 2005

2005080118(-3h~3h) Local received

2005080118(-3h~3h) From NESDIS

SATELLITE DATA ASSIMILATED IN GRAPES IN Nov. 2005

PREPROCESSING OF SATELLITE DATA IN GRAPES-VAR

Quality control (by NSMC)

C Thinning

Serror Correlation (Not represented in the obs. covariance)

Sto reduce data volume

Observational error Assignment

Statistics of the Innovations Tuning of the Error Setting

D Bias correction

Slobal Model
Segional Model

BIAS CORRECTION SCHEME IN PRACTICE: HARRIS AND KELLY(2001)'S SCHEME

Scan Bias

$$s = \langle d_i(\theta) - d_i(\theta = 0) \rangle$$

⇒ Air Mass Bias : $b=H(x_b)$ -y-s

🖏 Least Square

$$\mathbf{b} = \mathbf{A}\mathbf{p} + \mathbf{c}$$

♥p (predictors) b : Air Mass Bias

Solution

Predictors: Scan Bias I atitude Band Average **Air Mass Bias** Thickness between 1000-300hPa Thickness between 200-50hPa Surface $\mathbf{c} = \mathbf{b} - \mathbf{A}_{\mathbf{b}}^{\text{temperatures}}$ water vapor

AMSUA BIAS : H(XB)-YO

ESTIMATION OF STD. OF AMSUA ERROR

AMSUB BIAS OF H(XB)-YO

TUNING OF OBS. ERROR

Step1: Tuning of Obs. Error based on Innovation Statistics

$$\mathbf{\epsilon}^{o}_{sound}, \mathbf{\epsilon}^{o}_{synop}, \dots, \mathbf{\epsilon}^{o}_{amsu}, \dots, \mathbf{\epsilon}^{o}_{type_{N}}$$

Step2: Tuning of Different Observations

$$J(\alpha) = J(\mathbf{\epsilon}^{o}_{sound}, \alpha \mathbf{\epsilon}^{o}_{amsu}) \Longrightarrow J = \frac{p}{2}$$

NOAA 16 AMSUA

5.83235.40662.67160.96500.38400.22170.23260.40300.32730.33870.63271.32652.21773.36424.8095

6.7829 4.6709 3.6053 3.0412 2.7886

6.5990 4.6569 3.5632 3.0555 2.8246

IMPACT OF BIAS CORRECTION

- On Analysis Increments
- On Forecast

*ACC: Anomaly Correlation Coefficient

Typhoon Track Forecast

Segional Model

dxa: T, q Average of 2005080112—2005081512 **ANANLYSIS INCREMENTS** 15 days

dxa: T, q Average of 2005080112—2005081512 15 days

500hPa dq(bc) Unit:g/Kg

500hPa dq(nobc) Unit:g/Kg

500мв АСС (2005080112-2005081012,144н Forecast)

dxa: T, q Average of 2005080112—2005081512 15 days

200HPA ANALYSIS INCREMENTS

200hPa dT(bc) Unit:K

200hPa dT(bc+tuning) Unit:K

200hPa dq(bc) Unit:g/Kg

200hPa dq(bc+tuning) Unit:g/Kg

Bias Correction For Assimilation of ATOVS in GRAPES: Impact on Typhoon Forecast

Global Model (One Case: MATSA)

Regional Model (One Case: RANANIM)

GRAPES GLOBAL MODEL: 2005080112(UTC), 120H FORECAST

- Different Initial Value only
 N: NCEP Analysis
 - 🏷 G: GTS
 - S: GTS+AMSU+BC
 - ♦ O: Obs.

Animation of 700hpa humidity 144h Forecast GRAPES Global Model

NOAA 16:AMSUA-CH5,200408126

Ch5,6,7,8 **INNOVATION OF AMSUA(NOAA 1 6)** CH5-CH8

Ch7

Ch8

Ch5,6,7,8

AFTER Q.C. WITHOUT B.C

Ch7

Ch8

Ch5,6,7,8

AFTER Q.C. WITH B.C

Ch7

Ch8

Distribution of innovation of effective obs.

Dashed line: without B.C

AFTER Q.C.

Solid Line : with B.C.

H(xa)-Yo

RANANIM:0414

Precip. Forecast Durinig Rananim Landfall,24h

Arrows: 10m Wind Vectors Shaded 6-hour Accumulated Rainfall

Precip. Forecast Durinig Rananim Landfall, 30h

Arrows: 10m Wind Vectors Shaded 6-hour Accumulated Rainfall

DISCUSSION

ONGOING WORK

Thinning(Resolution of Obs., Analysis and Model)

- ♥ Global Model
- Segional and Mesoscale Model
- ♦ Constant Distance Thinning

Bias Correction

- ♥ Predictors
- Separameter Estimation Method
- ♥ Bias Model
- ♥ Treatment of Coast (No Options in RTTOV)

Observation Error Setting and Online Tuning

Interaction with Q.C.
 ➡ Diagnosis of E(Jmin)=p/2 (Talagrand, 1999; Chapnik, 2006)

Thank you for Attention