

Assimilation of Level-1D ATOVS Radiances in the Australian Region LAPS System

C. Tingwell, B. Harris, P. Steinle, W. Bourke, M. Naughton, G. Roff and J. Paevere

Bureau of Meteorology Research Centre

Bureau of Meteorology, Melbourne, Australia

The Domains of the Operational Suite of **Numerical Weather Analysis and Prediction Systems**

TXLAPS 0.375° grid

MESOLAPS 0.125° grid

CITY-CENTRED DOMAINS 0.05° grids

LAPS Configuration

- Hydrostatic
- Miller-Pearce explicit time-stepping scheme
- Third order upwinding advection scheme
- ECMWF land surface and vertical diffusion scheme
- Radiation: Fels-Schwartzkopf (SW) Lacis-Hansen (LW)

==> Sun-Edwards-Slingo

- Convection: Tiedtke's, early ECMWF mass flux scheme with MC trigger and closure. ==> CAPE closure
- Large Scale Rain : Bulk Explicit Microphysics

20050115-12Z

Simulated Early Cut Off 1D

GLOBAL 1D

Operational NESDIS

1DVAR in the Bureau of Meteorology

min $J = (x - x_b)^T \mathbf{B}^{-1} (x - x_b) + (y_0 + y(x))^T [\mathbf{E} + \mathbf{F}]^{-1} (y_0 - y(x))$

- x_b : background field
- y_0 : observed radiances
- x: control vector
- **B** : background error covariance matrix

 $\mathbf{E} + \mathbf{F}$: Observation and Forward model error covariance y(x): Forward operator

- Purser type dynamic error scaling
- Air mass dependent radiance bias predictors & bias monitoring
- Latitudinally varying scan correction
- Implemented operationally in GASP July 2000, LAPS Sept 2002

Australian Government Bureau of Meteorology

Comparison of locally received and processed (AAPP) NOAA-17 1D radiances with corresponding NESDIS values

Local AAPP radiance

LAPS 60-level Trials

- 1. All Met Office 1D radiance data available to final (base date-time) analysis
- Restricted set of Met Office 1D radiances available to final analysis – simulates impact of early cut-off
- 3. NESDIS radiances (as used by operational LAPS system) used for all analyses
- 4. Locally received and processed 1D radiances used in final analysis

All experiments nested in same GASP L60 trialAll other data types as per operational model

20050115-12Z

Simulated Early Cut Off 1D

GLOBAL 1D

Operational NESDIS

Australian Government
Bureau of Meteorology

Australian Government
Bureau of Meteorology

RMS.MSLP.0.mdl 2005010112-2005022012

+12

+24

+36

+48

+60

+72

+72

Australian Government Bureau of Meteorology

Bureau of Meteorology

RMS.MSLP.0.mdl 2005010112-2005022012

Bureau of Meteorology

RMS.MSLP.0.mdl 2005011412-2005021112

Australian Government Bureau of Meteorology

LAPS

NOAA-15 AMSU-CH05 -- 160L60 2005

+48h FORC

VERIF ANAL

Contour from 1000 to 1018 by 2

Contour from 968 to 1016 by 2

Contour from 1002 to 1018 by 2

Contour from 998 to 1015 by 2

Contour from 992 to 1018 by 2

Contour from 994 to 1016 by 2

Contour from 1000 to 1018 by 2

Contour from 994 to 1016 by 2

Contour from 990 to 1018 by 2

Contour from 994 to 1018 by 2

Contour from 1000 to 1020 by 2

Contour from 992 to 1018 by 2

Contour from 994 to 1020 by 2

Contour from 992 to 1020 by 2

Australian Government Bureau of Meteorology

Contour from 996 to 1020 by 2

Contour from 992 to 1020 by 2

Contour from 998 to 1020 by 2

Contour from 996 to 1020 by 2

Contour from 998 to 1020 by 2

Contour from 998 to 1020 by 2

Contour from 996 to 1016 by 2

Contour from 994 to 1018 by 2

Contour from 998 to 1018 by 2

Contour from 994 to 1018 by 2

Contour from 998 to 1016 by 2

Contour from 996 to 1016 by 2

Contour from 1000 to 1018 by 2

Contour from 995 to 1015 by 2

Contour from 1002 to 1018 by 2

Contour from 1004 to 1018 by 2

Contour from 1000 to 1020 by 2

Contour from 1005 to 1018 by 2

Melbourne floods Feb 3rd 2005

Contour from 994 to 1022 by 2

rta

Contour from 990 to 1020 by 2

rta

Contour from 992 to 1018 by 2

Centour from 990 to 1018 by 2

Contour from 998 to 1016 by 2

Contour from 1000 to 1016 by 2

rta

Contour from 996 to 1016 by 2

Centour from 998 to 1016 by 2

Conclusions

- Significant improvement in forecast quality from transition to 60 vertical levels in LAPS
- Additional improvement from use of AAPP derived 1D radiances
- Early cut-off may be a less significant issue for final (base date-time) analysis
- Successful assimilation of locally received and processed radiances

Further work

- AMSU-B
- Rainfall forecast verification
- Aqua
- GenSI/3D-VAR
- Mesoscale (10 km) assimilation
 - more frequent (3 hourly) insertions
 - earlier data extraction cut-offs
 - \Rightarrow local radiances essential

