Correlations between microphysical properties of large-scale semi-transparent cirrus (from TOVS) and the state of the atmosphere (from ECMWF ERA-40)

Gaby Rädel Claudia Stubenrauch, Fadoua Eddounia

Laboratoire de Météorologie Dynamique Ecole Polytechnique, France

Effective ice crystal size (D_e) and IWP retrieval of semi-transparent cirrus

based on: spectral difference of cirrus emissivities at 11–8 μm <u>Observations:</u>

NOAA10 1987 - 1991, 60°N - 60°S,
$$\theta_{v} < 25^{\circ}$$

large-scale cirrus: 1°×1° overcast, $p_{cld} < 440$ hPa
 $T_{cld} < 263K, T_{B}^{meas}(8\mu m), T_{B}^{meas}(11\mu m), T_{cld}, T_{surf}$
 $\varepsilon_{surf}(SARB), closest TIGR H_2O/T profiles$
 $\epsilon(\lambda, \theta_{\nu}) = \frac{B(T_{B}^{m}(\lambda, \Theta_{\nu})) - B(T_{surf}(\lambda, \Theta_{\nu}))}{B(T_{cld}(\lambda, \Theta_{\nu})) - B(T_{surf}(\lambda, \Theta_{\nu}))}$

hom. cloud, $\beta_{abs}(D_e), \langle \omega_0(D_e) \rangle, \langle g(D_e) \rangle$ planar polycrystals (mod. ADA) bimodal size distribution hom. cloud, $\beta_{abs}(D_e), \langle \omega_0(D_e) \rangle, \langle g(D_e) \rangle$ radiative transfer (Streamer (J.Key)) vary De, IWP

D, and IWP retrieval (cont.)

produce look-up tables: $D_e = f(\varepsilon_{8\mu m}, \varepsilon_{11\mu m})$, IWP = $f(D_e, \varepsilon_{11\mu m})$

Gaby Rädel

ITSC-13, November 2003

Sensitivity study on ice crystal size retrieval Rädel et al., J. Geophys. Res., May 2003

possible errors:

Overestimation of D_e : thin Ci with underlying water cloud

partial cover of thick Ci

different crystal shapes, e.g.

hexagonal columns instead of polycrystals

Underestimation of D_e : vertical heterogeneity, i.e.:

increasing D_e with cloud depth

broader size distribution

Evaluation of TOVS cloud height with LITE

(newest LITE inversion by L. Sauvage)

 $P_{cld}(TOVS) \approx p_{cld}(mid-cloud)$ better agreement for <u>low</u> large-scale cirrus clouds $LITE: \quad low clouds \quad high clouds$ $z_{top}-z_{base}: 1.3 \text{ km} \quad 2.7 \text{ km}$ Gaby Rädel ITSC-13, November 2003

5

Regional and seasonal variations of D_e and IWP

TOVS NOAA10 3-year averages

D_e and IWP as function of cloud temperature

Regional dependence for thin and thick Cirrus

Atmospheric properties accompanying large-scale cirrus

ERA-40 ECMWF reanalyses:

>humidity, U, V and W for 23 pressure levels

>Every 6 hours, 1.125° x 1.125° spatial resolution

Co-location with TOVS observations: (1989, 1990)

	Water vapour (cm) Horizontal wind (m/s)			Frequency of situations with			
	mean	RMS	mean	RMS	updraft	no wind	strong downdraft
NH midlatitude summer	3.0	1.2	14.5	10.9	9%	38%	3%
NH midlatitude winter	1.4	0.8	26.1	15.8	13%	29%	7%
tropics	5.0	0.9	7.6	6.0	7%	44%	0.1%
SH midlatitude summer	2.3	1.0	23.4	13.8	6%	42%	4%
SH midlatitude winter	1.5	0.8	22.3	15.2	10%	34%	4%

tropics: largest water vapour, smallest windsmidlat. winter: strongest windsSH: horizontal winds always strongmost large-scale semi-transparent cirrus in situations with no vertical wind

D_e and IWP as function of humidity and wind

Large-scale semi-transparent cirrus 60 N - 60 S, T_{cld} < 233K

Regional distributions of D_e and IWP as function of humidity and wind

Cirrus horizontal extent

determine horizontal extent of cirrus clouds (ε > 0.3):
a. empty boxes are filled with 'most likely' information on cirrus type
b. simple clustering algorithm groups adjacent boxes containing
deep convection (ε>0.95), cirrus (0.95>ε>0.5)
or thin cirrus (0.5>ε>0.3)

Gaby Rädel

ITSC-13, November 2003

Conclusions and Outlook

- ✤ Large-scale semi-transparent cirrus: <D_e>=55µm <IWP>=30g/m²
- \bullet IWP increases with T_{cld}
- ♦ TOVS Path-B & ECMWF reanalyses \rightarrow

 D_e and IWP increase with atmospheric water vapour, increase depends on vertical updraft, hor. wind,

formation processes?

- Study D_e as function of cirrus size and location to convective center for different dynamic situations
- Find parameterizations IWP = f (q,w,T), D_e = f (IWP,q,w,u+v,T) using also cluster information