Bias correction of satellite data at ECMWF

Thomas Auligne

Dick Dee, Graeme Kelly, Tony McNally

Slide 1

ITSC XV - October 2006

Motivation for an adaptive system

- Simplify the bias correction process of manual tuning / retuning
- Automatically handle:
 - Instrument problem / contamination
 - New version of RT Model
 - Appearance of new instruments
- Reanalysis issue: remove inconsistencies due to changes in the observing system
- Large increase in the number of satellite data (currently 29 instruments, ~500 channels, ~3000 bias parameters)

Prone to wrongly mapping systematic errors of the NWP model into radiance bias correction

ITSC XV - October 2006

Variational bias correction

Predictors:

- constant offset
- scan

• air-mass

Bias for each satellite/sensor/channel:

$$b(\beta, \mathbf{x}) = \sum_{i} \beta_{i} p_{i}$$

Slide 3

Add the bias parameters β_i to the control vector in the variational analysis \rightarrow joint estimation of bias and model state (Derber and Wu 1998) (Dee 2005)

Find optimal bias correction given all available information

ITSC XV - October 2006

NOAA-9 MSU Ch3 disruption (cosmic storm)

ITSC XV - October 2006

Performance of the VarBC reduction of bias wrt RS temperature data

ERA Interim experimentation Stratospheric model bias

Conclusion on VarBC

- Automation = big practical advantage
- Ability to handle sudden instrument shifts and slow drifts
- New sensors can be integrated easily (reasonable bias within 1-7 days)
- Consistency within the observing system (better fit to RS temperatures)
- Ability to (partially) discriminate between observation bias and systematic NWP model error relies on:
 - availability of unbiased data source (anchoring network)
 - observational coverage
 - parametric form

Parametric form to represent observation bias

ITSC XV - October 2006

Definitions

It is essential to distinguish...

PARAMETRIC FORM = the predictors chosen to characterize the bias (*e.g.* constant offset, NWP model preds, gamma, ...)

ADAPTIVITY = how the bias coefficients are updated:

Operational parametric form

- γ correction to the RT model: γ = fractional error in layer absorption coefficient ATIC ADAPTIVE
- Scan correction: 3rd order polynomial of Scan Angle
- Air-mass regression

Linear regression with a limited set of predictors P_i derived from the NWP mod ADAPTIVE

Instruments	# of preds	Predictors
HIRS, AMSU-A, AMSU-B, AIRS	4	1000-300, 200-50, 10-1, 50-5 hPa thicknesses
GEOS (GOES, Meteosat)	3	1000-300, 200-50 hPa, TCWV
SSMI	3	Tskin, TCWV, Surface Wind Speed

Estimation of the γ coefficient in VarBC

Property 1 = help reduce the first-guess departures

Uncorrected departures

Bias-corrected departures

Property 1 = help reduce the first-guess departures

Compute the variance explained for each potential predictor: not very convenient

The predictors are normalized (mean=0, std=1). The parameter values from VarBC can be compared to discard "useless" predictors

A "compensation" effect can happen b/w predictors that are correlated

Property 1 = help reduce the first-guess departures

Diagnostic 1 = absolute value of (normalized) parameters

Property 1 = help reduce the first-guess departures

Diagnostic 1 = absolute value of (normalized) parameters

Property 2 = focus on observation bias (and not systematic NWP model error)

Property 1 = help reduce the first-guess departures

Diagnostic 1 = absolute value of (normalized) parameters

Property 2 = focus on observation bias (and not systematic NWP model error)

- VarBC is **constrained** by all other observation sources (*e.g.* RS)
 - Offline adaptive BC tries to fully correct signal in the departures
 - A parametric form only explaining for observation bias only should be updated identically in both schemes

ITSC XV - October 2006

Property 1 = help reduce the first-guess departures

Diagnostic 1 = absolute value of (normalized) parameters

Property 2 = focus on observation bias (and not systematic NWP model error)

Diagnostic 2 = (dis)agreement b/w VarBC and Offline Adaptive BC

Conclusion & future work

- VarBC operational at ECMWF since September 12th 2006 and in ERA-Interim reanalysis
- Works well in many respects. Needs close attention to:
 - NWP model error mapping (e.g. stratosphere)
 - feedback process with Quality Control & Cloud Detection (e.g. window channels)
- Enables diagnostics to evaluate bias predictor relevance
- These can be used in an objective method to select predictors

Thank you...

ITSC XV - October 2006

Introduction of the VarBC in operations: first step

Feb 2006: implementation of a static bias correction derived from a VarBC experiment

Introduction of the VarBC in operations: first step

AIRS operational bias predictors

Weight decay regularization

ITSC XV - October 2006

.

ł