

Current status and future plans for the use of AIRS and IASI data at the Met Office

Fiona Hilton

Bill Bell, James Cameron, Stephen English, Stephan Havemann, Ed Pavelin, TR Sreerekha, Jon Taylor

ITSC15, October 2006

Talk Overview

- AIRS Status
- Developments in IR Sounding
 - Increasing AIRS data usage
 - Use of Principal Components
- IASI Plans
- Early IASI data monitoring
- IASI Routine data monitoring

AIRS Status

Current status of AIRS processing

- Fairly similar to initial implementation
- Using Warmest Field of View dataset since March 2006
 - Maximum 81,000 observations each cycle
- Use 45/57 out of 324 channels supplied (day/night)
- Only use observations over the sea, only in clear conditions
- Obs reduced to around 4-5% of original number for 4D-Var
 - Cloud detection and surface rejection
 - Post-1D-Var thinning removes the rest.
- WFOV similar impact to CFOV Valuable observation type!

© Crown copyright 2006

AIRS improves model fit to SSMI TCWV (see similar improvement in fit with AMSU-B)

Developments in IR sounding Increasing AIRS data usage

Future directions for IR data Increasing data usage

- Using data in cloudy areas
 - Use channels where the observed radiance has little contribution from atmospheric layers at or below the cloud top
 - Ed Pavelin's poster
- Using observations over land and sea-ice
 - Cloud detection
 - Land surface emissivity

Developments in IR sounding Use of PCs

Future directions for IR data Principal Component RT Modelling

Met Office

- HT-FRTC Model developed by Stephan Havemann
- Similar to Xu Liu's PCRTM
- Designed to calculate radiances
 - either at TOA
 - or for a range of viewing angles for airborne instruments
- Wavelength range: 3 16.5 µm
- Atmospheric absorption by water vapour and atmospheric gases included
- Spectral resolution: currently 0.5 cm-1, higher possible (down to 0.0025 cm-1)
- Accuracy: Better than 0.1 K in Tb.
- Speed: comparable to RTTOV

HT-FRTC Accuracy

Experimental 1D-Var Scheme working with Principal Components

- Uses the new Havemann Taylor Fast Radiative Transfer Code - working in EOF space
- A 1-D Var scheme with control vectors of T(p), q(p), T* and spectrally resolved surface emissivity
- Observations will be Principal Components
- 1st version for clear skies only will be tested early 2007
- Aim to add additional PCs that represent cloud properties in the future.

Plans for IASI

- We are planning a similar implementation as currently in place for AIRS
- Intend to use majority of 300 channel set as described in
 - "Selection of a subset of IASI Channels for Near Real Time Dissemination" by Collard and Matricardi (2005)
- Clear/Sea only to begin with

Early data quality monitoring – why do it?

SSMIS Reflector Emission – Early checks allowed

identification and resolution of data quality issues

- Take 1D-Var background error covariance matrix
- And an estimate of IASI instrument plus forward model error (assume channels uncorrelated)
- Calculate HBH^T+R
- Average across sea profiles from 13495 Chevallier profile dataset
- This should be roughly equivalent to what we expect for IASI Obs-Background values

Let's look at AIRS first

Met Office

 Real AIRS RMS (O-B) used to adjust
B-matrix to give realistic calculation

 Short-wave calculated error is much larger than truth.

What do we expect of IASI? (2)

IASI Data Quality Routine Monitoring

Routine Monitoring of IASI Data

- ITSC 14: Action from NWP Working Group to produce a Monitoring Strategy for IASI
- Aim is to encourage NWP centres to produce consistent monitoring output, making comparisons between centres easier
- Series of plots available on external web
- Provision of feedback to CNES/EUMETSAT in event of problem identification
- Currently ECMWF, Met Office, Météo-France have "signed up"

Routine Monitoring of IASI Data (2)

- For more detail on what is proposed, please see:
 - Proposal of a monitoring strategy for IASI Thomas Auligné (ECMWF) Denis Blumstein / Thierry Phulpin (CNES) Fiona Hilton (Met Office)
- Most of what is proposed is already produced by many NWP centres for other instruments, e.g. AIRS, ATOVS

Example monitoring plots Global Map

Example from ECMWF AIRS monitoring of selected channel

STATISTICS FOR RADIANCES FROM AQUA / AIRS - 75 MEAN ANALYSIS DEPARTURE (OBS-ANA) (BCORR.) (CLEAR) DATA PERIOD = 2006090100 - 2006092306, HOUR = ALL EXP = 0001

Min: -2.1150 Max: 5.3492 Mean: 0.207929

Example monitoring plots Time series plot

Example plot from Met Office ATOVS monitoring system Mean (blue) and SD (red) of O-B values of selected channel

Example monitoring plots Hovmoeller plot

Min: -8.2990

Example from ECMWF AIRS monitoring of selected channel

STATISTICS FOR RADIANCES FROM AQUA / AIRS ZONAL MEAN FIRST GUESS DEPARTURE (OBS-FG) [K] (CLEAR) CHANNEL = 2116 EXP = 0001

Mean: -0.182191

Max: 3.3205

Example monitoring plots DNA plot

Example plot from Met Office AIRS monitoring

Example monitoring plots Summary Map

- ABS(Mean(O-B)/SD(O-B))
- All channels plotted together
- Colour scale used to easily Identify outliers in red (next slide)
- Example plot with made-up data

Example monitoring plots Summary Map (Zoom)

Date

Any Questions?