

Current use of satellite data in the Met Office Global NWP model

Brett Candy

Nigel Atkinson, William Bell, Carlo Buontempo, James Cameron, Paul Earnshaw, Stephen English, Fiona Hilton, Mike Thurlow and David Walters

ITSC15

- Overview of our assimilation/forecast system
- Major changes to satellite data assimilation since ITSC-14
 - Main focus on microwave data. Advanced IR sounders follows this talk.
 - ►NAE improvements covered in a poster B03
- Planned improvements for the coming year

Our Assimilation/Forecast System

- The global model is non-hydrostatic, with a finite difference latlong grid, resolution N320 (~40km), with 50 levels (hybrid in height) and model top at 60km.
- The operational suite contains 4 update assimilation cycles for 6hour data windows, with 2 main 6-day forecasts run daily from 00Z and 12Z.
- Assimilation algorithm: 4D-Var. Inner loops contain linear Perturbation Forecast (PF) model.
- Timeliness is critical: the main forecasts have a data cut-off at T+2 hours; and T+7 hours for update runs.

Motivation for changes

- I. Take advantage of developments in space hardware to obtain new measurements of the atmosphere.
- II. Increase redundancy in system by introducing similar instruments to those already providing forecast impact
- III. Use existing observations in 'difficult' areas by improving the forward modelling and or taking advantage of developments in remote sensing science

....with the constraint that the system must run within a certain time

	Last Conference	This Conference
ATOVS	NOAA-15 AMSU (4-10,18,20) NOAA-16 AMSU (4-8,10,18-20) EOS Aqua AMSU (4-6,8-10)	NOAA-15 AMSU (4-5,7-10,12,13,18) NOAA-16 AMSU (4-8,10-14,18-20) NOAA-18 AMSU (4-14,18-20)
AIRS	EOS Aqua Central field (50 channels)	EOS Aqua Warmest field (50 channels)
SSM/I	F13 & F15 windspeeds	F13 only
Scatterometer	QuikScat ambiguous winds	QuikScat ambiguous winds ERS-2 (North Atlantic only)
AMVs	Meteosat-5,7 GOES-9,10,12, MODIS	Meteosat-5,8 GOES-11,12 MTSAT, MODIS
SSMIS		F16 (2-7,23)
GPS Radio Occultation		CHAMP/GRACE refractivity profiles

Forecast Improvements since ITSC-14

NOAA-18 Introduction

- Introduce NOAA-18 AMSU-A, MHS and remove Aqua AMSU-A.
- Data received via local antenna allowed us to get a head start. Fed results back to the NOAA-18 project team at NESDIS
- First use of generic radiance pre-processing code 'SatRad' which performs QC, channel selection and 1D-Var for a range of instruments (both operational and research)
- Operational: ATOVS (AMSU-A, B, HIRS), SSMIS
- Development: SSM/I, IASI, Geostationary radiances,...

NOAA-18 Impact

PMSL improved globally

•Mid tropospheric humidity also improved by up to 4%

•NOAA-18 into operations with four months from first local data overpass

Raising the model top and introducing AMSUA 12-14

50 Level model

- Removes need for separate stratosphere model
- Main level increase in stratosphere
- Better dynamical coupling between stratosphere/troposphere
- Better use of AMSU-A channels, including introduction of 12-14.

Analysis Diagnostics

NOAA-16 ATOVS channel 10

Sonde Temperatures

Forecast Verification

VERIFICATION VS OBSERVATIONS

OVERALL CHANGE IN NWP INDEX = 0.992

Forecast Verification II

VERIFICATION VS OBSERVATIONS

In Operations

Introduction of GPS RO & SSMIS

SSMIS

Data Coverage: SatRad ATOVS (20/9/2006, 0 UTC, qu00) Total number of observations assimilated: 14624

> 4337 NOAA-15, Min: 206, Max: 206, Mean: 206 3243 NOAA-16, Min: 207, Max: 207, Mean: 207

- Initially concentrate on AMSU-A equivalent channels 2-7,23
- •Considerable work on instrument biases see A12 Poster by Swadley
- Preprocessing to regrid instruments and perform spatial averaging
- Channel selection for assimilation based on ATOVS methods e.g. Rain flagging using 91/183 GHz scattering

Met Office

GPS Radio Occultation

- Research trials using refractivity profiles from the CHAMP mission showed forecast improvements to temperature fields in upper tropopause *Healy et al., GRL 2005*
- Data is now available in real time ~40 profiles per six hour cycle. Also using occultations from GRACE mission
- COSMIC (and then GRAS on METOP) will increase the amount of data

RO & SSMIS Package Performance

VERIFICATION VS OBSERVATIONS OVERALL CHANGE IN NWP INDEX = 0.703 10 PERCENTAGE CHANGE IN RMSE PERCENTAGE CHANGE IN RMSE 5 T+12 96+ 1+24 +48 172 L+24 T+48 +72 96+ +48 +48 +2 1+ +24 +72 L+24 +72 +2 V850 N850 500 500 V850 MSI SMS 500 500 V250 1250 125 MS -10 NHEM TROP SHEM

- •Shows modest improvement in PMSL forecasts in SH and NH
- 33 days verification
- Switched to operations
 26th September

- Analysis of cloud using AMSU-A window channels and use of sounding channels in the presence of cloud (see poster A3 English et al.)
- Introduce METOP ATOVS into system & RARS
- Reintroduce HIRS (N17 HIRS is showing humidity benefits)
- Take advantage of the imaging channels on SSMIS and assess F17 (launch date Nov)

Usefulness of EARS retransmission

External company outage of Comms link ~12 hours

- Introduced three two new sounding satellites SSMIS F16 & NOAA-18 to the operational system with resulting improvements to forecast accuracy.
- Robustness and timeliness still important
- For the first time we have exploited GPS data operationally at the Met Office
- Future upgrades will seek to use more sounding data in difficult regimes

Additional Slides

Increase of Local Data

Control

Met Office

Initial Results NOAA17 (4x ATOVS)

Neutral on index

- •Sufficient time left over to process 5 ATOVS
- •Humidity impacts.....

N17 HIRS humidity fit

N16 AMSU-B fit

MO 4DVar N320 trials: winter 2005/06

VERIFICATION VS OBSERVATIONS OVERALL CHANGE IN NWP INDEX = 0.376

• Modest, but consistent, reduction in SH PMSL (~1%)

• Subsequent summer 2006 'package' (SSMIS+GPSRO) trial more mixed

Averaging

Gaussian Convolution (σ = 50 km) Fields of View 1, 15, 30, 45 and 60

- Operational preprocessor uses σ = 50km (FWHM = 118km)
- NE $\Delta T_{eff} \sim 0.03 K$
- Processing time ~ 1 minute/ orbit

© Crown copyright 2006

• NE Δ T for LAS channels is ~0.3K \Rightarrow require averaging to achieve NE Δ T_{eff} = 0.1K

• Also benefit from improved scale matching?

Background: Accuracy Requirements and Initial Performance

