Use of satellite radiances in the global assimilation system at JMA

Kozo Okamoto, Hiromi Owada, Yoshiaki Sato, Toshiyuki Ishibashi

Japan Meteorological Agency

ITSC-XV: Maratea, Italy, 4-10 October 2006

Satellite data assimilated in JMA operational system

Other satellite data

- AMV from MTSAT1R, GOES-11,12 Meteosat-5,8
- AMV from Aqua+Terra/MODIS
- sea surface winds from QuikSCAT/SeaWinds
- Under development
 - CSR (Clear Sky Radiance) from MTSAT-1R CSR
 - refractivity index from GPS occultation
 - radiances from Aqua/AIRS

JMA global assimilation system

4DVar

- incremental method
- outer: TL319L40, inner: T106L40
- model top : 0.4 hPa
- Background error covariance based on NMC method
- Physical processes included are simplified versions of gravity drag, long wave radiation, convection, cloud condensation.
- VarBC (Variational Bias Correction)
- assimilation window: 6h
 - 1h time slot X 6
- cut off time: 2h20m for early anal, 5h35m-11h35m for final anal

VarBC (1/2)

- adaptive bias correction scheme incorporated in a variational scheme (Derber and Wu 1998; Dee 2004)
- bias correction coefficients are analyzed as analysis variables

$$J(x) = (x - x_b)^T \mathbf{B}^{-1}(x - x_b) + [y - H'(x)]^T \mathbf{R}^{-1}[y - H'(x)] + (\beta - \beta_b) \mathbf{B}_{\beta}^{-1}(\beta - \beta_b)$$

$$H'(x) = H(x) + \sum_{i=1}^{N} \beta_i p_i(x_b) \quad \beta : BC \text{ coef.}, p_i : \text{predictors}$$

- obtain balanced coefficients among targeted obs, model, and other obs
 - BC coeffs obtained from only guess could be contaminated by model biases
 - easy to adjust to model and data changes

3.7

- BC coef time-sequence monitor may be used as instrumental quality monitor
- applied to all radiance data
 - predictors for AMSU-A/B: ILR, Ts, TCCLW, 1/cosθ const
 - predictors for MWR: TCWV, Ts, Ts2, wind.speed, 1/cosθ const
 - □ ILR: integrated (weighted) lapse rate
 - **TCCLW:** total column cloud liquid water retrieved by AMSU-A
 - □ TCWV: total column water vapor retrieved by MWR

VarBC (2/2)

- BC coef variation monitor may be used as instrumental quality monitor
- ex. NOAA15 AMSU-A ch6
 - Fluctuation of VarBC coef well correspond to instrumental temperature fall

ATOVS radiance assimilation

- NOAA-15,16,17,Aqua/AMSU-A,-B
 - Ievel-1C AMSU-A ch.4-13 and AMSU-B ch.3-5

QC

- less cloudy-affected radiances are used depending on surface conditions
- thinning
 - AMSU-A: 250km, -B: 180km
 - choose one satellite among overlapped satellites in each 1-h time slot

BC

- 2-step scheme: scanBC + airmassBC
- scanBC removes predefined O-B average at each scan position
- airmassBC removes the residual using VarBC

ATOVS assimilation changes in Aug2006

improve QC

- adopt MSPPS latest version for MW-cloud detection
- stricter gross error QC, remove edge scans
- recalculate scanBC
- change VarBC predictors
- modify obs errors of AMSU-A
 - reduce obs error inflation factor, 2.3 to 1.2
 - obs errors are inflated in 4DVar main analysis to complement neglecting horizontal error correlation and balance among contributions from other observations and guess.
 - O-B has been getting smaller due to using level-1C data, revising scanBC and including VarBC

ATOVS assimilation changes in Aug2006

impacts on forecasts

MWR radiance assimilation (1/2)

- DMSP/SSMI, TRMM/TMI, Aqua/AMSR-E
 - less cloud-affected radiances over the ocean with SST > 5 deg.C
 - assimilate only vertical polarized channels at 19 89 GHz
 - not change surface variables through emissivity Jacobian
 - VarBC corrects biases against model
- Comparison with TRMM 3-day-averaged TCPW
 - MWR radiance assimilation leads to better representation of TCPW

MWR radiance assimilation (2/2)

Impacts on forecasts

- better precipitation
 - Correlations of 1day-forecast against GPCP:
 - > w/oMWR:0.881 vs. wMWR:0.891 (Aug2004)
 - > w/oMWR:0.835 vs. wMWR:0.841 (Jan2004)
- better typhoon track
- smaller errors in Psea and wind speed at both 850 and 250 hPa

operational in May 2006

MTSAT-1R CSR assimilation (1/2)

- clear sky radiances (CSR) from MTSAT-1R WV channel
 - Meteorological Satellite Center (MSC) of JMA produces
 - ready for dissemination to NWP community

MTSAT-1R CSR assimilation (2/2)

under development

- improve forecast skills, including 500T, in the Tropics and summer hemisphere
- However, forecast skills in the winter hemisphere are degraded
 may conflict with AMV (biases)?

(Cntl-Test)/Cntl

- revising
 - thinning interval (now every 1-h time slot)
 - observation errors (now 1.5K)

Plans

ATOVS

- improve MW emissivity to use more data over land/snow/sea-ice
- add NOAA18
- use AP-RARS data in early analysis
- CSR from geostationary satellites
- AIRS and IASI radiances
- SSMIS radiances (Global DAS) and retrievals (Meso-scale DAS)
- GPS occultation as refractive index
- ASCAT (ambiguity) winds
- cloud/rain-affected radiances of MW and IR sensors

AP-RARS (Asia-Pacific Regional ATOVS Retransmission Service)

Shaded area shows coverage of the data received at AP-RARS stations (as of Sep. 2006).

Impacts of AP-RARS

- expected to improve early analysis by adding early delivery data
 - shrink the difference from data-rich final analysis
- comparison of early analysis with final analysis w and w/o AP-RARS
 - Z30 at 00UTC on Jul 18, 2006

data distribution of AP-RARS (NOAA16 AMSU-Ach1)

Supplemental slides

NWP operational system (as of Sep.2006)

	Global Model (GSM)	Regional Model (RSM)	Typhoon Model (TYM)	Mesoscale Model (MSM)	One-week Ensemble
Objectives	Medium-range forecast	Short-range forecast	Typhoon forecast	Disaster reduction	One- week forecast
Forecast domain	Global	East Asia	Typhoon and its surrounding	Japan and its surrounding	Global
Grid size / Number of grids	0.5625 deg 640 x 320 (TL319)	20 km 325 x 257	24 km 271 x 271	10 km 721 x 577	1.125 deg 320 x 160 (TL159)
Vertical levels / Top	40 0.4 hPa	40 10 hPa	25 17.5 hPa	50 21,800m	40 0.4 hPa
Forecast hours (Initial time)	90 hours (00 UTC) 216 hours (12 UTC) <mark>36 hours (06, 18 UTC)</mark>	51 hours (00, 12UTC)	84 hours (00, 06, 12, 18 UTC)	<mark>15 hours</mark> (00, <mark>03</mark> , 06, <mark>09</mark> , 12, <mark>15</mark> , 18, <mark>21</mark> UTC)	9 days (12 UTC) 51 members
Analysis	4D-Var	4D-Var	Interpolated from Global Analysis	4D-Var	Global Analysis with ensemble perturbations

super computer at JMA

ATOVS VarBC predictors

- ILR, Ts, TCCLW, 1/cosθ const
- dependence on the predictors
 - TCCLW dependence for AMSU-A4 and lower tropospheric ch.
 - Separation of ocean and land may be needed for Ts
 - unclear dependence for AMSU-B

