An Observing System Simulation Experiment to evaluate the future benefits of MTG-IRS data in a fine-scale weather forecast model

#### **Stéphanie Guedj**

Vincent Guidard Benjamin Ménétrier Jean-François Mahfouf











#### **Meteosat Third Generation – IR Sounder (MTG-IRS)**

Onboard GEO platform, scheduled for launch in 2020 ... 1 image / 30 min over Europe 1738 channels Spec. Res. 0.625 cm<sup>-1</sup> (Comparable to IASI) Horiz. Res. 5 km (Comparable to SEVIRI)







#### **Meteosat Third Generation – IR Sounder (MTG-IRS)**

Typical simulated IRS spectrum





OSSE (Observing System Simulation Experiment) is implemented to investigate the potential impact of prospective observing system such as MTG-IRS.

The true atmospheric state is called the **Nature Run** (NR). It is a free-run, long and uninterrupted forecast performed by a **global** NWP model :



OSSE (Observing System Simulation Experiment) is implemented to investigate the potential impact of prospective observing system such as MTG-IRS.

The true atmospheric state is called the **Nature Run** (NR). It is a free-run, long and uninterrupted forecast performed by a **global** NWP ARPEGE model :

#### **Nature Run : ARPEGE/IFS Free-Run forecast**

Spectral resolution : T1200 ~ 7 km over Europe / 105 levels Initial conditions : 20/06/2013 – 0h Model version : cy380p1 No data assimilation !





OSSE (Observing System Simulation Experiment) is implemented to investigate the potential impact of prospective observing system such as MTG-IRS.

The true atmospheric state is called the **Nature Run** (NR). It is a free-run, long and uninterrupted forecast performed by a **global** NWP model : **ARPEGE** 

Simulated observations (+IRS) are produced from the NR <u>and</u> they are the input to a **meso-scale data assimilation system** :



OSSE (Observing System Simulation Experiment) is implemented to investigate the potential impact of prospective observing system such as MTG-IRS.

The true atmospheric state is called the **Nature Run** (NR). It is a free-run, long and uninterrupted forecast performed by a **global** NWP model : **ARPEGE** 

Simulated observations (+IRS) are produced from the NR <u>and</u> they are the input to a **meso-scale data assimilation system** :

#### **OSSE : 3D-Var AROME/France forecast system**

~ 2.5 km over France / 60 levels Initial conditions : 15/07/2013 – 0h (**NR**) 3h-assimilation window Coupling (1h) : Nature Run Assimilation of the **full simulated observing system** (+ IRS) : The AROME domain





OSSE (Observing System Simulation Experiment) is implemented to investigate the potential impact of prospective observing system such as MTG-IRS.

The true atmospheric state is called the **Nature Run** (NR). It is a free-run, long and uninterrupted forecast performed by a **global** NWP model : **ARPEGE** 

Simulated observations (+IRS) are produced from the NR <u>and</u> they are the input to a **meso-scale data assimilation system** :

#### **OSSE : 3D-Var AROME/France forecast system**

~ 2.5 km over France / 60 levels Initial conditions : 15/07/2013 – 0h (**NR**) 3h-assimilation window Coupling (1h) : Nature Run

The AROME domain

Conv : Radiosondes, Aircraft, Ship/Buoy, Profilers, VAD winds, Surface station Sat : ATMS, AMSU-A, MHS/AMSU-B, AMVs, GPS-SOL, IASI/ CrIS /AIRS, SEVIRI, HIRS



#### **Observing System Simulation Experiment (OSSE)**

Free-Run forecast simulation, with simulated imperfect "observations". Truth known.







#### Challenges :

What is the optimal use of simulated MTG-IRS WV channels that will maximize the positive impact on analysis of Limited Area Models?

 $\Rightarrow$  Observation error, thinning distance, channel selection ...



#### Error sources : Measurement, Forward model, Representativeness, Quality control ...

Problem : We do NOT know the **true observation error** and their **correlations** ... But we can have some estimates : Garand et al., 2007;Stewart, 2007; Bormann and Bauer ,2010; Bormann et al., 2010;Miyoshi et al.,2013...

Neglecting error correlations can lead to sub-optimal analyse if the observation are used too densely and errors are correlated (Liu and Rabier, 2003)  $\Rightarrow$  Obs errors are voluntary over-estimated in Operational NWP Systems.

In the OSSE, simulations of observation errors are calibrated using statistic errors provided by the operational system.

**Observation error correlations for simulation and assimilation are neglected.** 



Calibration : Verifies the simulated data impact by comparing it to real data impact



### **Future benefits of MTG-IRS :** Assimilation experiments

- $\mathbf{REF} = \mathbf{Nature Run}$
- **CTL** = **OSSE** ~ OPER with the full simulated observing system
- **IRS-80km** = CTL + IRS (80 km, 25 Q channels)

Period : 20/07/2013 (8 assimilation cycles)

#### Additional experiments Thinning distance :

- **IRS-40km** = CTL + IRS (**40 km**, 25 Q channels)
- IRS-20km= CTL + IRS (20 km, 25 Q channels)

+ Channel selection (not shown)













International TOVS Study Conference XIX: Jeju Island, South Korea, April 2014





International TOVS Study Conference XIX: Jeju Island, South Korea, April 2014





 $\Rightarrow$  Even if IRS observations are simulated assuming uncorrelated errors, there is a thinning distance threshold where background errors interact with obs. errors ...





IRS-80km IRS-40km IRS-20km CTL



### **Conclusion, limitations and future work**



- An OSSE was implemented at Météo-France to demonstrate the **future benefits of MTG-IRS data in a fine-scale AROME forecast model**
- The full observing system was simulated from the NR using calibrated observation errors.
- Several configurations (thinning & channels number) were tested to better understand how background errors interact with observation errors.
- ⇒ IRS showed strong and systematic positive impacts on the analysis of humidity
- $\Rightarrow$  Negative impacts may occur on T and winds fields if the density of IRS is inadequate ...

### **Conclusion, limitations and future work**



- An OSSE was implemented at Météo-France to demonstrate the **future benefits of MTG-IRS data in a fine-scale AROME forecast model**
- The full observing system was simulated from the NR using calibrated observation errors.
- Several configurations (thinning & channels number) were tested to better understand how background errors interact with observation errors.
- ⇒ IRS showed strong and systematic positive impacts on the analysis of humidity

 $\Rightarrow$  Negative impacts may occur on T and winds fields if the density of IRS is inadequate ...

Limitations :

- An **optimal channel selection** for MTG-IRS data (including T channels).
- $\Rightarrow$  The potential of using PC scores instead of L1 radiance data.
- Impact of clouds on simulated Bt and assimilation.
- Make use of **2 different RT models** for simulation and assimilation.

### **Conclusion, limitations and future work**



- In this work, the perturbation added to radiances simulations was assumed to be uncorrelated.
- Recently, the a posteriori desroziers diagnostic for **inter-channel error correlation** was run on IRS simulated/assimilated WV data within the framework of this OSSE.
- <u>Result</u> : Significant inter-channel error correlation were found even if the perturbation added to the observation was not correlated ...



# Thank You

### **Estimate of Observational Errors Correlation SEVIRI as proxy to MTG-IRS**





 $\Rightarrow$  Even if IRS observations are simulated assuming uncorrelated errors, there is a thinning distance threshold where background errors interact with obs. errors ...





#### **Data Assimilation of Real Observations (DAS)**

Real Evolving Atmosphere, with imperfect observations. Truth unknown







![](_page_25_Picture_1.jpeg)

![](_page_25_Figure_2.jpeg)

## Simulation of Observational Errors : MTG-IRS

![](_page_26_Picture_1.jpeg)

Estimate of observation error amplitude using IASI real data as proxy for IRS

![](_page_26_Figure_3.jpeg)

 $\Rightarrow$  IRS stdev error estimate : ~0.4K for T channels and ~0.5/1K for Q channels

## Simulation of Observational Errors : MTG-IRS

![](_page_27_Picture_1.jpeg)

Estimate of horizontal correlation of real SEVIRI WV observation errors

![](_page_27_Figure_3.jpeg)

Distance (km)

![](_page_28_Picture_1.jpeg)

Configuration of assimilation experiments using simulated observations : sigma O scaling

|            | First Guess | Assim. OBS | Boundary condition | Stdev error            |
|------------|-------------|------------|--------------------|------------------------|
| REF_OPER   | AROME OPER  | Real       | ARPEGE OPER        | AROME OPER * fact_oper |
| EXP_sig0.8 | ARPEGE NR   | Simulation | ARPEGE NR          | AROME OPER * fact_0.8  |
| EXP_sig0.5 | ARPEGE NR   | Simulation | ARPEGE NR          | AROME OPER * fact_0.5  |
| EXP_sig0.2 | ARPEGE NR   | Simulation | ARPEGE NR          | AROME OPER * fact_0.2  |

#### METHOD :

- $\Rightarrow$ Analysis increments (not shown)
- $\Rightarrow$  comparison of obs-guess & obs-analyse statistics
- + specified stdev modifications if needed

<u>Note</u>: - conventional data fact\_oper = 0.8 - satellite data fact\_oper = 1.15

## Simulation of Observational Errors : MTG-IRS

![](_page_29_Picture_1.jpeg)

![](_page_29_Figure_2.jpeg)

Toujours un temps d'avance

#### Maps of averaged temperature fields produced by the Nature Run vs the ARPEGE OPER forecast model over 1 month (July 2013)

![](_page_30_Figure_3.jpeg)

#### ARPEGE OPER forecast model:

![](_page_30_Figure_5.jpeg)

#### **Preparation for IRS : channel selection**

![](_page_31_Picture_1.jpeg)

#### Averaged IRS Bt simulated spectrum over the AROME domain

![](_page_31_Figure_3.jpeg)

Normalized weighting function (a Transmittance / aln(P))

### The observing system

![](_page_32_Picture_1.jpeg)

![](_page_32_Figure_2.jpeg)

#### METEO-FRANCE couverture de donnees - SYNOP/SHIP - 2014/03/04 00H UTC Nombre total d'observations avant screening : 4823

-FRANCE couverture de donnees - TEMP - 2014/03/04 00H UTC Nombre total d'observations avant screening : 28

![](_page_32_Figure_5.jpeg)

#### Satellite :

<u>Conventional</u>:

Aircraft

**Profilers** 

٠

•

٠

٠

•

•

Radiosondes

Ship / Buoy

VAD winds

Surface station

Reflectivities

- ATMS ٠
- AMSU-A ٠
- MHS / AMSU-B ٠
- **AMVs** ٠
- **GPS-SOL** •
- IASI / CrIS / AIRS ٠
- **SEVIRI** .
- HIRS

METEO-FRANCE couverture de donnees - SATOB - 2014/03/04 00H UTC Nombre total d'observations avant screening : 1571

METEO-FRANCE couverture de donnees - CRIS - 2014/03/02 03H UTC Nombre total d'observations avant screening : 707 34\*

![](_page_32_Figure_17.jpeg)

FRANCE couverture de donnees - GPS - 2014/03/04 00H UTC lombre total d'observations avant screening : 11642

![](_page_32_Figure_19.jpeg)