

Validation of forecast cloud parameters from multispectral AIRS radiances

Louis Garand, Ovidiu Pancrati, Sylvain Heilliette Environment Canada Data Assimilation and Satellite Meteorology Research Section

17th TOVS Study Conference Monterey, CA April 14-21, 2010

Motivation

- Provide to modelers a reliable methodology to validate cloud height and amount distributions in forecasts
- Improve cloud parameter retrievals, with applications to model validation, data assimilation and climate studies
- Use hyperspectral sounders to do this in a general framework (applicability to AIRS, IASI, Cris...)

Typical 6-h AIRS

coverage

Basic idea

Assumption: Comparing directly model output cloud parameters with retrievals subject to ambiguous results due to limitations of the retrieval technique

Therefore:

• Retrieve effective cloud height and amount from CO₂ - slicing technique using observed AIRS radiances

• Retrieve same parameters from calculated AIRS radiances using forecast output at real observation locations

Eliminates ambiguity of definition between retrieved and model values of cloud parameters: comparing apples with apples. This also allows to understand and minimize limitations of the retrieval technique.

Data, RTM

INPUT:

Collected data: AIRS 281-channel set reduced to center pixel in 3X3 "golf ball" (in assimilation warmest, but this is not suitable for climatology of cloud parameters)

Forecast model: EC global model, 600 X 800 grid (~35 km), interpolated at the location of observation, 6 h forecast (valid interval 3-9h) and 12h forecast (valid interval 9-15h) at 45 min intervals. Entire month of July 2008 used (31 days times 4 forecasts/day).

Radiative transfer model: modified RTTOV 8.7 version

Cloud optical properties: cloud overlap scheme [*Räisänen, 1998*], fixed liquid particle size (10 μ m radius over land and 13 μ m radius over ocean), ice particle size parameterization [*McFarquhar et al. 2003*]

Revision/adaptation of CO₂-slicing technique

following this study

- 13 radiance pairs used, all in narrow range 13.2-14.1 μm
- Median value of height retained with corresponding effective amount

before

• Original implementation for AIRS in 2004 used 12 pairs with channel 528 (12.2 µm) used in all pairs. Mean was retained.

CO₂-slicing technique: new selection

Initial configuration: 12 channels coupled with a reference channel				
Channel #	Wavenumber			
204	707.770			
221	712.661			
232	715.862			
252	721.758			
262	724.742			
272	727.752			
299	735.298			
305	737.152			
310	738.704			
355	752.970			
362	755.237			
475	801.001			
Reference channel				
528	820.731			

	Chosen configuration:
13	pairs of coupled channels
	In narrow limited range

	Channel A		Channel B	
Pair #	#	cm ⁻¹	#	cm ⁻¹
1	204	707.770	252	721.758
2	221	712.661	262	724.742
3	232	715.862	272	727.752
4	252	721.758	299	735.298
5	262	724.742	305	737.152
6	272	727.752	310	738.704
7	299	735.298	355	752.970
8	305	737.152	362	755.237
9	310	738.704	375	759.485
10	355	752.970	375	759.485
11	362	755.237	262	724.742
12	375	759.485	252	721.758
13	375	759.485	204	707.770

Assimilation impact test on CO2-slicing channel selection: 120 h forecast vs observations

Definition of model cloud parameters

Based on cloud transmittance τ_{cloud} (*I*, *TOA*) in a window channel, considering cloud emissivity and overlap assumptions

CTH = effective Cloud Top Height = *level* I where $\tau_{cloud} = 0.9$

Ne = effective cloud fraction = $1 - T_{cloud}$

N = cloud fraction, same definition, but assuming cloud emissivity of unity: cloud mask

Understanding CO₂-slicing

Direct model output CTH vs retrieved CTH

- Bias increases with height except for low Ne
- Underestimation of retrieved overcast cases

Model CTH vs retrieved CTH from simulated AIRS radiances

Remarkable similitude in dynamic range and bias attributed to CO_2 slicing technique. Implies definition of model height OK.

Canada

Environnement nvironment Canada

Canada

Model CTH vs retrieved CTH from simulated AIRS radiances

ent Environnement Canada

Model CTH vs retrieved CTH from simulated AIRS radiances

Model CTH vs retrieved CTH from simulated AIRS radiances

Canada

The bias model vs retrieved is quite stable. Only cloud amounts superior to 0.5 were considered.

Importance of CTH bias correction

15-S to 15 S CTH distribution

Tool to the modeler: cloud height distributions. Here global for 15 june 2008

Real data Co2-slicing

Simulated data CO2-slicing

Direct model output (e<=1)

Environnement

Canada

Environment

Canada

DRAFT – Page 16 – January 20, 2010

CTH distributions 15S=15N

45

15

Frequency (%)

Environment Environnement Canada Canada

25

Canada

CTH distributions 65-90 N

Real data Co2-slicing

Direct model output (e<=1)

Direct model output (e=1)

Environment Environnement Canada Canada

CTH distributions 65-90 S

Environment Environnement Canada Canada

Ne global distributions

Effective cloud amount Ne monthly results

Model 3-9-h Ne simulated BTs

Observed Ne AIRS-JPL

Ne from direct 3-9h model output

DRAFT - Page 21 - January 20, 2010

Environment Environnement Canada Canada

Cloud fraction (N) comparisons

AIRS-CMC cloud fraction

Source: MODIS science team

Excellent agreement between AIRS-CMC and MODIS Model has maximum

Monthly cloud height results

Observed AIRS-CMC

Observed Modis

Model 9-15h forecasts CO2-slicing

Observed AIRS-JPL

Environment Environnement Canada

Direct model output 3-9h forecasts

Conclusions

- A model validation methodology for basic cloud parameters was presented based on the following principle: Apply the same retrieval technique to real and simulated radiances
- Robust definitions of model effective height and amount are proposed
- The method is designed for hyperspectral sounders and relies on well established Co2-slicing method
- CO₂-slicing technique was revised. It is suggested to use ~13 independent pairs in range 13.2-14.1 mm range. Retain median CTH and corresponding Ne.
- A simple CTH bias correction is proposed based on simulated retrievals with remarkable similarity to real retrievals compared to CALIPSO heights
- Vertical distributions of CTH is the main output to the modeler to adjust cloud and radiation parameterizations.
- Monthly products compare well with independent sources such as AIRS-JPL and MODIS. Differences are attributed to different retrieval methodology.

