

Emerging and Evolving Opportunities for Achieving Global Soundings for NWP and Climate Using GNSS/GPS Radio Occultation Systems

STATES

ITSC-17, Session 7: Current Use in NWP Asilomar Conference Center, Monterey, CA Monday, April 19, 2010

Stephen Mango^{1,2}, David Ector^{2,4}, Richard Fulton², Peter Wilczynski², Lidia Cucurull³ and William Schreiner⁴, Chris Rocken⁴

¹Short & Associates, Inc, ²NOAA/NESDIS/OSD, ³NOAA/NESDIS/STAR, ⁴UCAR

Introduction / Basis

COSMIC/FORMOSAT-3 GPS RO Constellation [Apr 2006 - Present] [6 GNSS RO S/C in LEO Orbits (alt = ~ 800 km., i = 72°)] Comparison of Traditional Cross-Track Sounders and GNSS RO Sounders

- Multiplicity of GNSS Signal Sources
 - GNSS Signal Source Constellation Systems
 - GNSS Signal Source Characteristics
 - Timelines for GNSS Signal Sources
- Multiplicity of Spacebased GNSS Radio Occultation Receivers
 - Some GNSS RO Capabilities, Coverage/Spatial Density,
 - Multiple GNSSRO Constellations
- COSMIC-2 Status
- Coverage utilizing Multiplicities of GNSS Sources and RO Receivers
 - Global and/or Regional

Atmospheric Temperature Profiles [T (h_s)]

Water Vapor Profiles [p(h_s)]

Pressure Profiles [P(h_s)]

Refractivity Profiles [N(h_s)]

Bending Angle Profiles $[\alpha(h_s)]$

Electron Density Profiles [N_e(h_s)] & Total Electron Content [TEC]

Ionospheric Scintillation [S₄ & σ_{ω}]

Height of the top of the planetary boundary layer [PBL]

Height of the tropopause [H_{trop max}]

Daily - COSMIC vs Radiosondes

-COSMIC provides significant improvement in Weather forecast skill

8 hours improvement at Forecast Day 4 and

>15 hours improvement during Forecast Day 7

- Particularly significant improvement over the oceans and in Southern Hemisphere

- Analysis – COSMIC satellite loss causes significant NOAA forecast skill loss

Global QBO Signal (Dominant Signal in Stratosphere)

ENSO Signal (Dominant Tropospheric Variability)

NATIONAL OCEANIC AND ATMOS	NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Comparison (1/2) Traditional Cross-track Infrared/Microwave Sounders and GPS Radio Occultations [GPSRO] Sounders										
Traditional Cross-track Infrare and GPS Radio Occultation											
Attribute	AIRS/AMSU IASI/AMSU CrIS/ATMS	GPSRO									
Assimulation of Pre-Geophysical Product Data into NWP Models, i.e. Weather Forecasting	Yes (Calibrated Radiances or Retrieved Profiles)	Yes (Bending Angles or Refractivities)									
Assimulation into Climate Prediction Models	Yes	Yes									
All Weather Sounding Capability for Troposphere	No [*]	Yes ¹									
Direct measurement of total mass of atmosphere at each altitude level	No	Yes									
Determination of Atmospheric Temperature Profiles throughout Troposphere	Yes	Yes ²									
Determination of Atmospheric Moisture Profiles	Yes	Yes ²									
Accurate Determination of Tropopause [establishes important boundary condition for NWP]	No	Yes									
Requires First Guess Sounding – affects accuracy & rate of convergence of an iterative process	Yes	No									

Footnotes: 1. Only minimally affected by clouds, aerosols and light precipitation, "Applications of COSMIC to Meteorology and Climate", R.A. Anthes, C. Rocken, Y.-H. Kuo
2. Separates temperature and moisture effects where T(layer) < 225 K or altitude h > ~ 8 km

Stand AND ATMOSPHERIC REAL	NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION											
THUHH US DEPARTMENT OF COUNTRY	Comparison (2/2) Traditional Cross-track Infrared/Microwave Sounders and GPS Radio Occultations [GPSRO] Sounders											
	Attribute	AIRS/AMSU IASI/AMSU CrIS/ATMS	GPSRO									
High Accu for	racy Profiling throughout Troposphere weather & climate forecasting	Yes - High	Yes - Higher									
	Vertical (Altitude) Resolution throughout Troposphere	High	Higher									
H	lorizontal Resolution for NWP throughout Troposphere	Moderate	Low -Along Track High - Cross Track									
Requires rac externa	diosondes, vicarious calibrators or other al sources for calibration/validation	Yes	No Self Calibrating									
Instrum	ent Drift over lifetime of sensor (s)	Usual and Customary & Can present calibration issues	Not a calibration issue, due to rationing technique									
Satellite-	to-Satellite Bias - Requires correction	Yes*	No									
Can prof	ile lonosphere [e.g. electron density]	No	Yes									

AND ATMOSPHE

NOAA

Multiplicity of GNSS Signal Sources **GNSS Signal Source Constellation Systems**

SP

STATES O

Opportunities with Challenges exist for GNSS System Operational Timelines Opportunities with Challenges exist for GNSS Signal Compatibilities & Interoperability

AND ATMOSPHE

T SOMETHENT OF CO.

GNSS RO Actual / Possible Missions

CLANNE A		DSPHERIC.	BOMINISTRATION 3	N A T	NS	SS	oce RC	алі) Д			т м о	D S P H	HERI SSI	c a	омі Э Г	lis	rrat Sio	ns	*	SARTHE		
S, DEPA,	P7MENT	OF COM	00	01	02	03	03	04	05	06	07	08	09	10	11	12	13	14	15	16	TES OF	1
				CH SAC/C	AMP																	
										GRAC	E											
										CO	SMIC Metor	 -A [GF				Meto	p-B [G	RASI		Me	top-C I	G
											T	erraSA	R-X									
														OCEAI	SAT-	2 [ROS	A]					
				17 41										KO	MPSA	T-5 Topiqu	les					
Plar Res	nned earcl	1												S	AC/D							
Bes	t Effo	ort												Т	anDEI	v-x						
Оре	eratio	nal		\geq											PAZ			075				
																		COS	MIC-II			
																		EC	UARS			

Each with GPS Radio Occultations Sensor System

Each with GPS Radio Occultations Sensor System

"A Multi-Mission, Multi-SmallSat System"

8 high-inclination-angle S/C + 4 low-inclination-angle S/C Data are distributed more homogeneously

COSMIC-2 Occultations – 3 Hrs Coverage

(4 hrs.)

Sun-Fixed Occultations, 8 S/C in 8 Planes, Inc 72 deg, GPS, 4 hours

(24 hrs.)

Sun-Fixed Occultations, 1 S/C, Inc 72 deg, GPS, 24 hours

Sun-Fixed Occultations, 8 S/C in 8 Planes, Inc 72 deg, GPS, 24 hours

ND ATMOSPHE

NOAA

DEPARTMENT OF

.S. N NATIONAL OCH.

Multiplicity/Spatial Density of Soundings Multiple GNSS Signal Sources – Multiple GNSS RO S/C

# GNSS RO S/C	GNSS Signal Sources	# Soundings Daily Total	Average Horiz. Spacing [km]	# Soundings Daily Average In 500 km x 500 km Box
6	GPS	3,112	404.8	1.5
6	GPS+GLO	5,959	292.6	2.9
6	GPS+GLO+GAL	9,307	234.1	4.6
12	GPS	6,267	285.3	3.1
12	GPS+GLO	11,954	206.6	5.9
12	GPS+GLO+GAL	18,645	165.4	9.1
24	GPS	12,506	201.9	6.1
24	GPS+GLO	23,905	146.1	11.7
24	GPS+GLO+GAL	37,320	116.9	18.3
48	GPS	25,012	142.8	12.3
48	GPS+GLO	47,761	103.3	23.4
48	GPS+GLO+GAL	74,536	82.7	36.5

28 Propagated at UCAR

NENT OF C

STATES

Separt

Thank You So Much For Your Attention ...