Impact of cloudy radiances in global numerical weather prediction model.

Nadia Fourrié, V. Guidard, T. Pangaud and F. Rabier

CNRM-GAME

Météo-France and CNRS

Toulouse

Outline

In operations: Assimilation of AIRS cloudy radiances, Methodology, results

A step further: Cloud-affected IASI radiance simulation

Summary and future work

Assimilation of AIRS cloudy radiances_

Method used for the assimilation of AIRS cloudy radiances affected by mid- to low-level clouds

Cloud parameters determined with CO2slicing (120 channels)

Minimisation of F_{ka}

$$F_{k,p} = rac{(R_{clr}^{k} - R_{obs}^{k})}{(R_{clr}^{K_{ref}} - R_{obs}^{K_{ref}})} - rac{(R_{clr}^{k} - R_{cld}^{k,p})}{(R_{clr}^{K_{ref}} - R_{cld}^{k_{ref},p})}$$

Robs: observed radiance

Rclr: clear radiance simulated from the model

Rcld: radiance with opaque cloud at pressure level p

k= channel of the C02 band

Ref= reference channel (surface)

= 917.31 cm - 1 (AIRS)

Cloud top pressure:

$$p_c = \frac{\sum p_{c,k} w_k^2}{\sum w_k^2}$$

 $p_c = \frac{\sum p_{c,k} w_k^2}{\sum_{w_k^2}} \qquad P_{c,k} : \text{pressure level minimizing } F_{k,p} \\ W_k : \text{ derivative of } F_{k,p} \text{ wrt pressure}$

Effective cloud fraction

$$N_{arepsilon} = rac{(R_{clr}^{k_{ref}} - R_{obs}^{k_{ref}})}{R_{clr}^{k_{ref}} - R_{cld}^{k_{ref}}}$$

AIRS: sigma_o(cloudy) = sigma_o(clear) = 1K

Impact on AIRS analysis

More observations are assimilated, particularly for tropospheric channels (potentially more contaminated by clouds).

Geographical coverage of assimilated observations for the channel 239 (478 hPa:mid-troposphere). 01/09/06 à 00UTC

Impact on forecasts from AIRS

- Statistics accumulated from 01/09/06 to 04/10/06 RMSE difference with respect to radiosonde data
- Positive impact in the whole atmosphere for geopotential, over northern hemisphere, southern hemisphere, tropics and Europe, statistically significant.
- Positive impact for temperature, wind and humidity, but not statistically significant

Europe domain, geopotential field

Case study: predictability of the Medicane storm (Pangaud et al, 2009, MWR)

•Medicane: Storm that affected the southeastern part of Italy on the 26th of september 2006.

(Only clear)

(Clear+Cloudy)

Analyses

Preliminary study for IASI cloudy radiances: Impact of the channel set

- Validation in current operational configuration: RTTOV version 9, enhanced horizontal and vertical resolution of the global atmospheric model.
- reference channel. 867 (861.5cm-1)
- 36 channels

Evaluation of the cloud parameters from IASI

lasi cloud top pressure retrieval

24 January 2009, 00 UTC

Conclusion and future work

- Cloud parameters retrieved with CO2slicing method, input of the RT model in the assimilation process
- Small positive impact of the AIRS cloud-affected radiance assimilation on the forecast skill.
- In operations since February 2009 for the global model and since april 2010 for the mesoscale model AROME.
- Paper by Pangaud et al, 2009, MWR.
- Same methodology applied for IASI as the one used for AIRS
- Choice of a channel set for the cloud parameter retrieval
- First results encouraging: simulation of a winter storm with the assimilation of IASI cloud-affected radiances.
- Further validation of the cloud parameter retrieval
- Assimilation of IASI cloud-affected radiances
- Study for the mesoscale AROME model

