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Wzt 1s an EnNlE?

 For both the variational and Kalman filter approaches to

data assimilation, the analysis equation looks like
N X p p Xp
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 In (unlocalized) EnKFs, the background error
covariance Is replaced by the sample error covariance

below, where the k columns of X are the perturbation

state vectors of each ensemble member
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e Spurious correlations limit the utility of unlocalized
EnKFs, especially when the number of ensemble
members is much less than the number of state variables.
The sample error covariance can be localized

* In model space (Eqg. 1)
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e Or in observation space (Eqg. 2)
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We will show why a widely-used covariance localization
method for EnKFs has difficulty with satellite radiances:

Integrated measures have no well-defined location.

Because neighboring satellite channels have broad,
overlapping weighting functions, the radiance
perturbations measured by these channels are correlated;
any localization that removes these correct correlations will
be suboptimal.

If the localization in the vertical is significantly broader
than the radiance correlation length, spurious correlations
will remain; if it is not significantly broader, correct
correlations will be eliminated. Because typical weighting
functions cover a significant fraction of the model
atmosphere, there may be no middle ground.
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e 30 NOGAPS levels

* NAVDAS forecast error covariance for
temperature (assume variance of 1.0 K2)

« AMSU-A analogs to channels 6-11

 Localization widths are tuned to give the best
results for each observation error variance,
ensemble size, and type of localization
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In model space, distance iIs well-defined

What is the distance between channel 1 and
channel 27

One commonly used approximation is the
distance between the peaks of the weighting
functions—the radiances in each channel are
assigned to a particular location in model space

The result is that after observation space
localization, each channel can correct only one
model level
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100,000 trials, 4 ensemble sizes (8, 16, 32, and 64), 7
observation error variances (101, 109, 10-1,... 10°)

For each trial, a forecast error and observation error are
generated, and the localization methods are applied with
a range of localization widths (from 0.1 to 2.3 units In
Log,, pressure (hPa))

The mean square analysis error normalized by the mean
square forecast error, averaged over all trials, is plotted
against the log of the observation error variance for each
ensemble size for the optimal localization width

99% confidence intervals are shown
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e Given as many independent satellite radiances as
vertical levels, the analysis error should tend to
zero as the observation error variance tends to zero

e 30 AMSU-A analogs with overlapping weighting
functions

e Look at the 16-member case, which has
insufficient rank for the unlocalized EnKF to be
useful, and repeat the experiments
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SLIfrIery

« Distance and location are not well-defined for integrated
measures

« Broad satellite weighting functions force observation
space localization functions to either be so broad that they
lose effectiveness, or so narrow that true inter-channel
covariances are suppressed or eliminated

« Both problems contribute to the systematically worse
performance of observation space localization in our 1D
experiments

 Failure to convergence to zero analysis error in the
presence of perfect observations is another troubling
feature of observation space localization



Corclusiors

 Although observation space localization iIs significantly
more computationally efficient than model space
localization, there are existing methods that are
computationally feasible and localize in model space
(e.g. Buehner 2005, Bishop and Hodyss 2009)

* We recommend that users weigh carefully the
computational performance gains they expect relative to
the drawbacks demonstrated here
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