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• For both the variational and Kalman filter approaches to 
data assimilation, the analysis equation looks like

• In (unlocalized) EnKFs, the background error 
covariance is replaced by the sample error covariance 
below, where the k columns of X are the perturbation 
state vectors of each ensemble member

What is an EnKF?What is an EnKF?

( )
( )( )a b bx x y x

−
≡ +

= + −

1T T
b bK P H HP H R

Kr r r rH

N x p p x p

f T
j j j≡P X X

Nxk   kxN



• Spurious correlations limit the utility of unlocalized 
EnKFs, especially when the number of ensemble 
members is much less than the number of state variables. 
The sample error covariance can be localized 

• in model space (Eq. 1)

• or in observation space (Eq. 2)

Covariance LocalizationCovariance Localization
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Radiance Localization Radiance Localization 
Difficulties in the VerticalDifficulties in the Vertical

We will show why a widely-used covariance localization 
method for EnKFs has difficulty with satellite radiances:

1) Integrated measures have no well-defined location.
2) Because neighboring satellite channels have broad, 

overlapping weighting functions, the radiance 
perturbations measured by these channels are correlated; 
any localization that removes these correct correlations will 
be suboptimal.

3) If the localization in the vertical is significantly broader 
than the radiance correlation length, spurious correlations 
will remain; if it is not significantly broader, correct 
correlations will be eliminated. Because typical weighting 
functions cover a significant fraction of the model 
atmosphere, there may be no middle ground.



1D Model1D Model

• 30 NOGAPS levels
• NAVDAS forecast error covariance for 

temperature (assume variance of 1.0 K2)
• AMSU-A analogs to channels 6-11
• Localization widths are tuned to give the best 

results for each observation error variance, 
ensemble size, and type of localization



AMSUAAMSUA--A AnalogsA Analogs



Temperature LocalizationTemperature Localization



Distance in Radiance SpaceDistance in Radiance Space

• In model space, distance is well-defined
• What is the distance between channel 1 and 

channel 2?
• One commonly used approximation is the 

distance between the peaks of the weighting 
functions—the radiances in each channel are 
assigned to a particular location in model space

• The result is that after observation space 
localization, each channel can correct only one 
model level



AMSUAMSU--A Channel 9A Channel 9 
Radiance LocalizationRadiance Localization



Experimental DesignExperimental Design

• 100,000 trials, 4 ensemble sizes (8, 16, 32, and 64), 7 
observation error variances (101, 100, 10-1,... 10-5)

• For each trial, a forecast error and observation error are 
generated, and the localization methods are applied with 
a range of localization widths (from 0.1 to 2.3 units in 
Log10 pressure (hPa))

• The mean square analysis error normalized by the mean 
square forecast error, averaged over all trials, is plotted 
against the log of the observation error variance for each 
ensemble size for the optimal localization width

• 99% confidence intervals are shown





Idealized InstrumentIdealized Instrument

• Given as many independent satellite radiances as 
vertical levels, the analysis error should tend to 
zero as the observation error variance tends to zero 

• 30 AMSU-A analogs with overlapping weighting 
functions

• Look at the 16-member case, which has 
insufficient rank for the unlocalized EnKF to be 
useful, and repeat the experiments



Normalized Analysis ErrorNormalized Analysis Error



SummarySummary

• Distance and location are not well-defined for integrated 
measures

• Broad satellite weighting functions force observation 
space localization functions to either be so broad that they 
lose effectiveness, or so narrow that true inter-channel 
covariances are suppressed or eliminated

• Both problems contribute to the systematically worse 
performance of observation space localization in our 1D 
experiments

• Failure to convergence to zero analysis error in the 
presence of perfect observations is another troubling 
feature of observation space localization



ConclusionsConclusions

• Although observation space localization is significantly 
more computationally efficient than model space 
localization, there are existing methods that are 
computationally feasible and localize in model space  
(e.g. Buehner 2005, Bishop and Hodyss 2009)

• We recommend that users weigh carefully the 
computational performance gains they expect relative to 
the drawbacks demonstrated here
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