

John Eyre and Fiona Hilton

Met Office, UK



# Beyond optimal estimation: sensitivity of analysis error to misspecification of background error

- Motivation
- Theory of analysis/retrieval error
  - optimal estimation
  - sub-optimal case
- Illustration
  - scalar case
  - IASI example
- Conclusions and further work



### Motivation (1)

What improvements are needed to exploit advanced IR sounder data more fully in NWP?

- Efficient processing of the full spectrum
- Observation errors, including correlations
- Residual biases
- Surface properties over land and ice
- Background error statistics
- Treatment of cloud



### Motivation (2)

- Optimal estimation (OE) theory
  - ... assumes the error covariances are known.
  - In practice, they are not known.
- → 2 ways forward:
  - improve estimates of covariances continuing work
  - make assimilation/retrieval robust against our inevitable lack of knowledge
- Applies to both background and obs error covs, B and R
  - in this presentation, only B considered



### Motivation (3)

- Why is B inevitably in error?
  - global averages can be estimated quite accurately
  - ... but large spatial/temporal variability.
- We need to understand our sensitivity to B and its inevitable mis-specification,
  - particularly for satellite radiances ...
    - non-local observations (→ Fiona Hilton's paper)



### Motivation (4)

- Advanced IR sounders have vertical resolution ~ 1 km
  - sensitive with low error to scales »1 km
  - not sensitive to scales «1 km
  - sensitive to scales ~ 1 km, but with errors comparable to background errors
- → Need to understand B its magnitude on different scales
  - determines how measurements and prior information are weighted on each scale
- → ... and effects of mis-specifying B on each scale



#### **GENERAL CASE**

Analysis equation (linearised):  $x^a = x^b + K \cdot (y^o - H[x^b])$ 

Analysis error equation:  $\varepsilon^a = \varepsilon^b + K \cdot (\varepsilon^o - H \cdot \varepsilon^b)$ 

$$\varepsilon^{a} = (I-K.H). \varepsilon^{b} + K. \varepsilon^{o}$$

Analysis error covariance:  $A = (I-K.H).B.(I-K.H)^T + K.R.K^T$ 

#### **OPTIMAL CASE**

assumed value  $B_A$  = true value B

$$K = B_A.H^T.(H.B_A.H^T+R)^{-1}$$
 $A_{OPT} = (I-K.H). B_A.(I-K.H)^T + K.R.K^T$ 
 $= (I-K.H).B_A$ 
 $A_{OPT}^{-1} = B_A^{-1} + H^T.R^{-1}.H$ 

#### Projecting on to the eigenvectors of $B_A$ :

V = eigenvectors of  $B_A$ :  $\Lambda$  = eigenvalues of  $B_A$ 

$$A_{OPT}^{-1} = B_A^{-1} + H^T.R^{-1}.H$$
 $V^T.A_{OPT}^{-1}.V = V^T.B_A^{-1}.V + V^T.H^T.R^{-1}.H.V$ 
 $V^T.A_{OPT}^{-1}.V = \Lambda^{-1} + V^T.H^T.R^{-1}.H.V$ 

#### Why B<sub>△</sub>?

- because this is what we use the "filter" within the DA system
  - Met Office 4D-Var performs vertical analysis in this eigen-space



#### **OPTIMAL**

$$A_{OPT}(B) = (I-K.H). B .(I-K.H)^T + K.R.K^T$$
 $K(B) = B.H^T.(H.B.H^T+R)^{-1}$ 

GENERAL / SUB-OPTIMAL, which means  $B \neq B_A$ ,  $K=K(B_A)$ 

$$A(B) = (I-K(B_A).H).B.(I-K(B_A).H)^T + K(B_A).R.K(B_A)^T$$

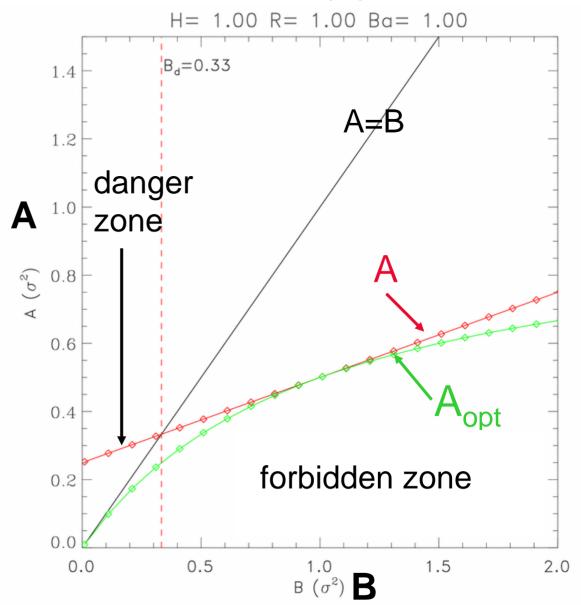
$$A(B) = A_{OPT}(B_A) + (I-K(B_A).H).(B-B_A).(I-K(B_A).H)^T$$

Note: linear in B



### Illustration – scalar case (1)

$$H = 1$$
  
 $R = 1$   
 $B_A = 1$ 

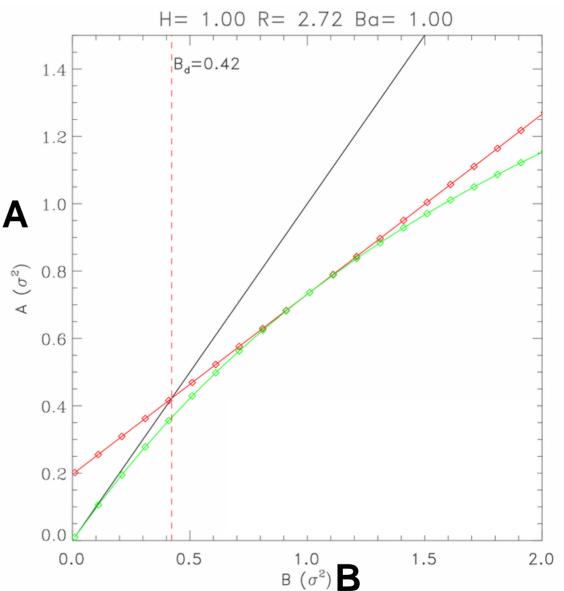




## Illustration – scalar case (2)

H = 1 R = 2.72 $B_A = 1$ 

higher observation error

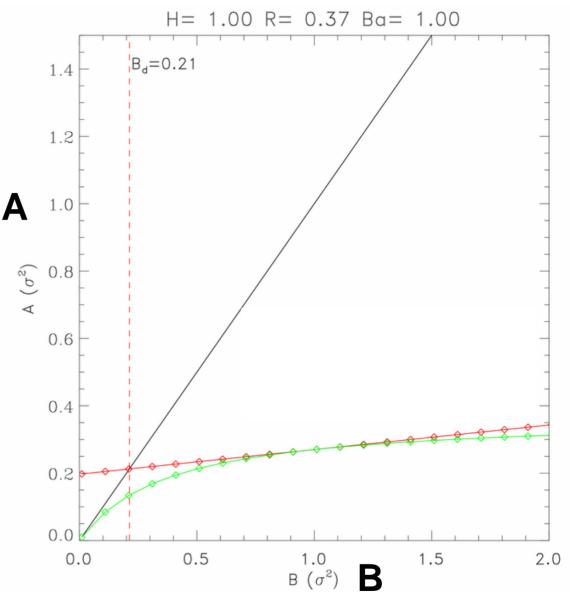




## Illustration – scalar case (3)

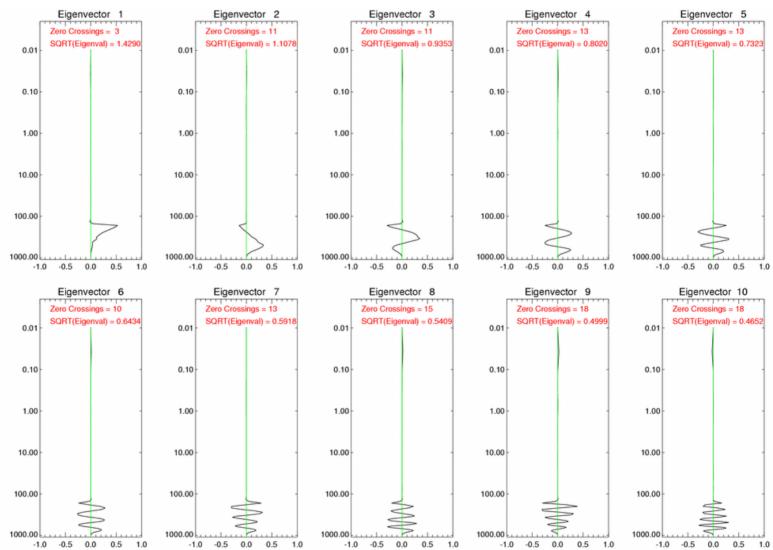
H = 1 R = 0.37 $B_A = 1$ 

lower observation error



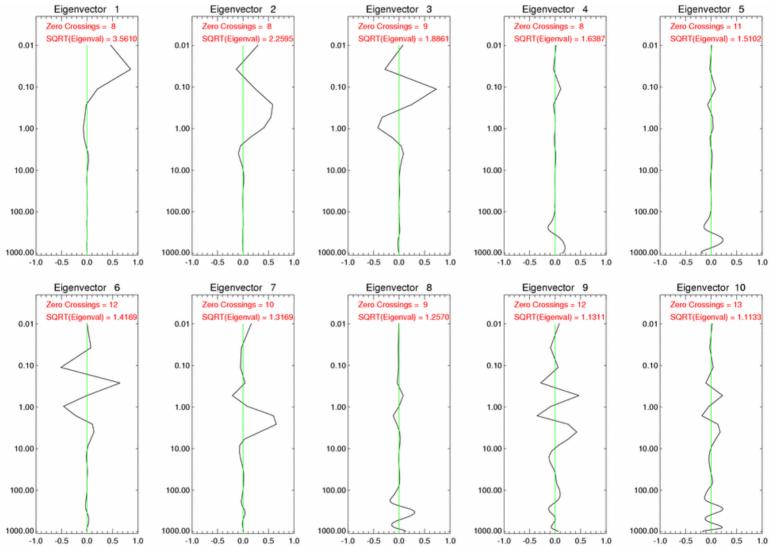


## Leading eigenvectors of B<sub>A</sub> MetO 70-level model, ln(q) (vectors 1-10)



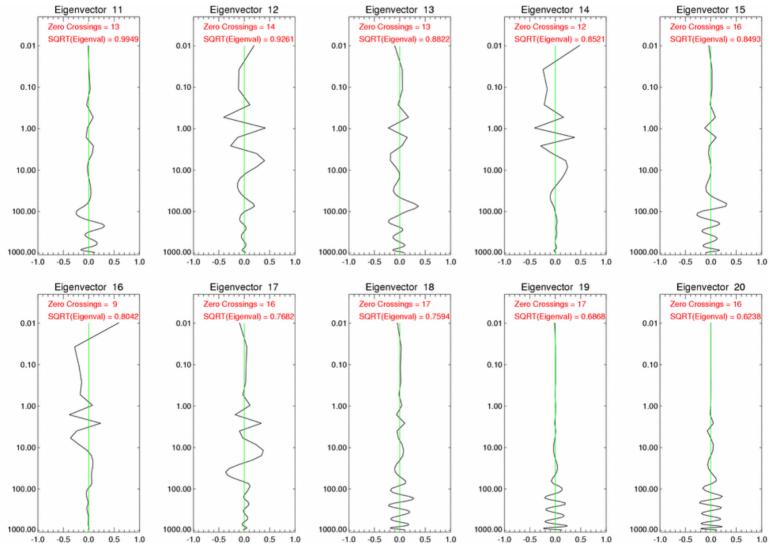


## Leading eigenvectors of B<sub>A</sub> MetO 70-level model, temp. (vectors 1-10)





## Leading eigenvectors of B<sub>A</sub> MetO 70-level model, temp. (vectors 11-20)





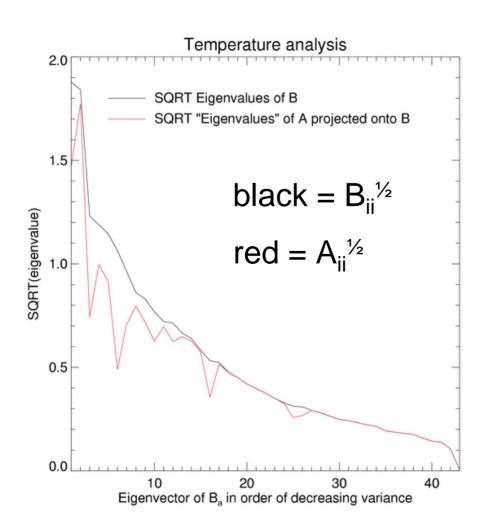
### Illustration – IASI (1)

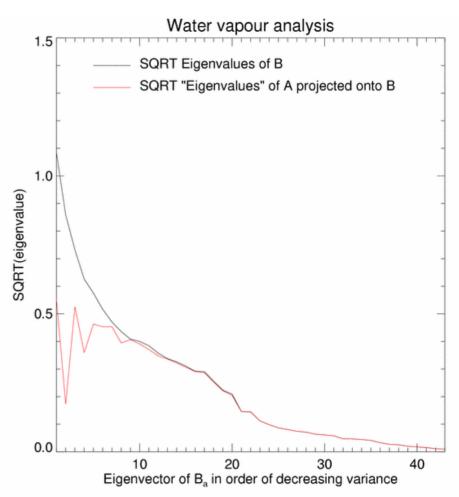
- Met Office operational 1D-var channel selection
  - 183 channels, of which 31 in water vapour band
- Observation error
  - instrument noise, or
  - instrument noise + forward model error of 0.2K + extra for unmodelled trace gas
- Analysis on 43 RTTOV levels using Jacobians from US standard atmosphere



## Diagonal of analysis error mapped to eigenvectors of B<sub>A</sub>

#### observation error = instrument noise + forward model error

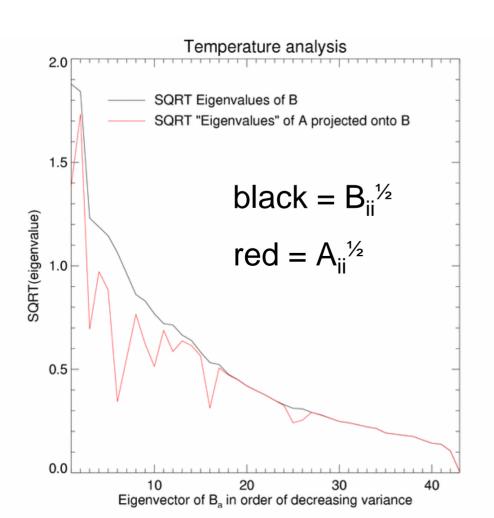


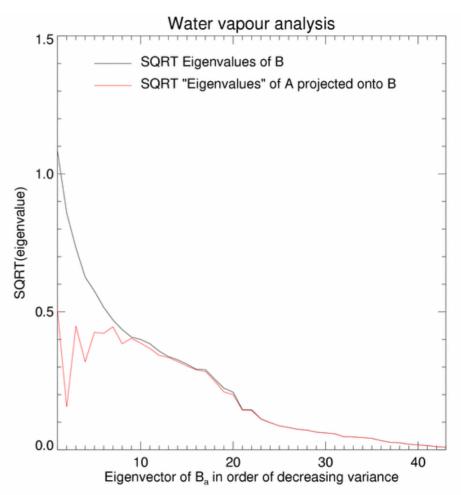




## Diagonal of analysis error mapped to eigenvectors of B<sub>A</sub>

#### observation error = instrument noise







### Conclusions so far ...

- Goal: make retrievals/analyses robust against inevitable errors in the background error covariance
- ... particularly for effective assimilation of satellite sounder data
- What is crucial for NWP? structure of B assumed by the DA system, B<sub>A</sub>
- Beware the danger zone! analysis errors higher than background errors
- Current problems with Met Office 4D-Var B-matrix for temperature
- (provisional result) Some real IASI information is currently filtered out by the assimilation system



- Further work needed:
  - to perform a more complete error analysis for IASI
  - to understand B<sub>A</sub> on each scale | good idea, in general
  - ... and to improve it
  - to make B<sub>A</sub> robust against inevitable errors



Thank you! Questions?

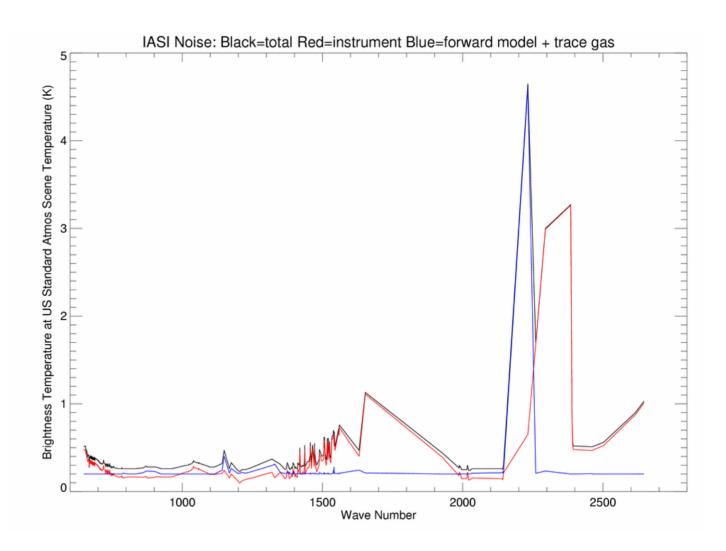


### IASI noise

black: total

red: instrument

blue: forward model + "trace gas noise"





### Goal

- To exploit the improved vertical resolution of advanced IR sounders
- ... whilst retaining the (usually accurate) information from the NWP model on sharp vertical structures
  - e.g. PBL top, tropopause

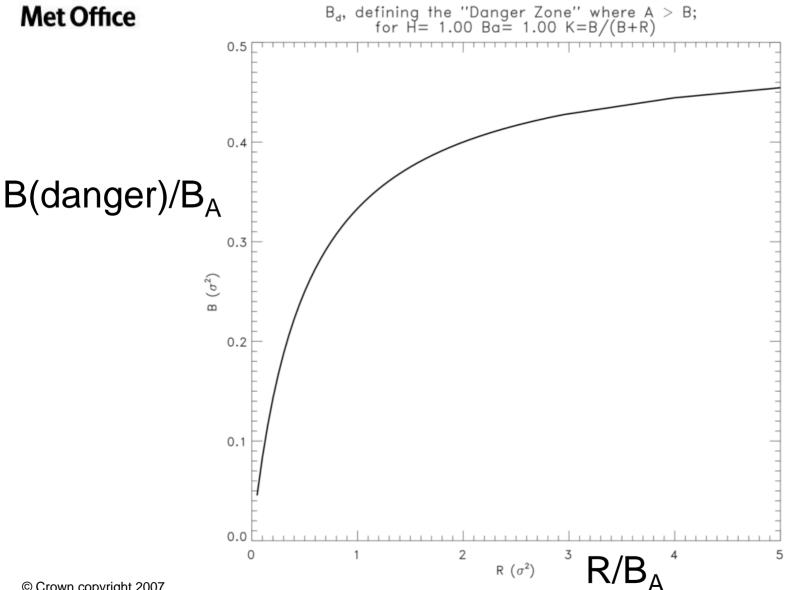


### Prior work on mis-specification of errors

- O.N.Strand 1977 The Annals of Statistics
- R.Daley 1991 Atmospheric Data Assimilation
  - R.Seaman 1977 MWR
  - R.Seaman et al. 1983 Aus. Met. Mag.
  - R.Franke 1985 MWR
- P.Watts and A.McNally 1988 Proc. ITSC-IV
- A.McNally 2000 QJRMS
- Others?



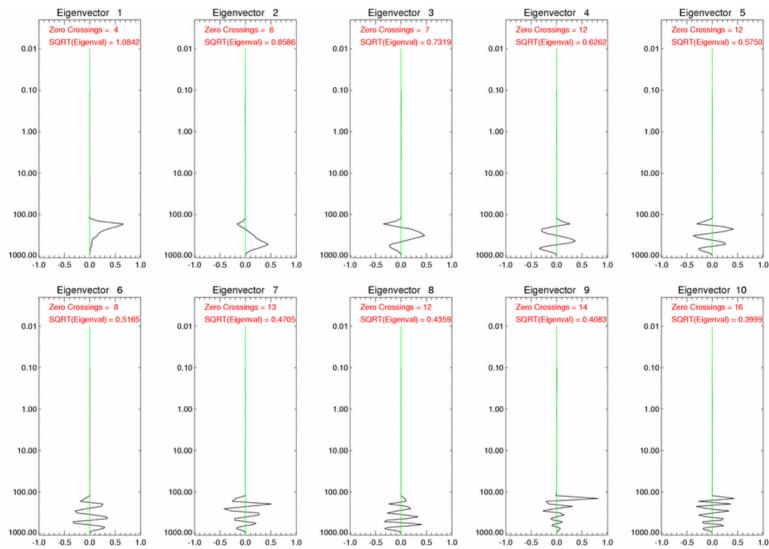
## Scalar case – the danger zone





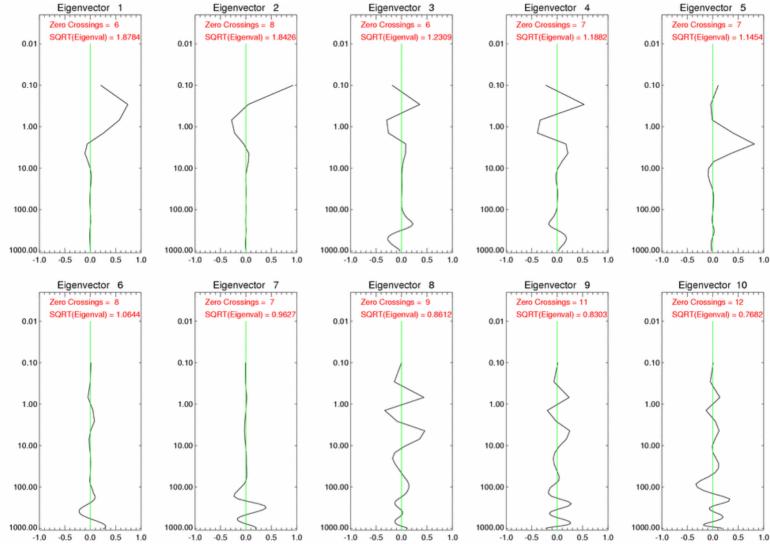
© Crow

## Leading eigenvectors of B<sub>A</sub> 43 RTTOV levels ln(q) (vectors 1-10)



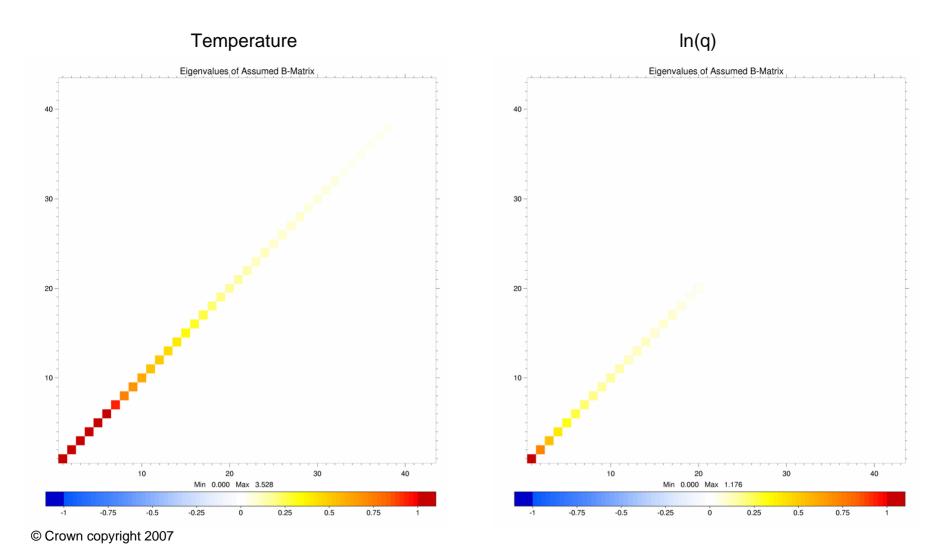


## Leading eigenvectors of B<sub>A</sub> 43 RTTOV levels temperature (vectors 1-10)



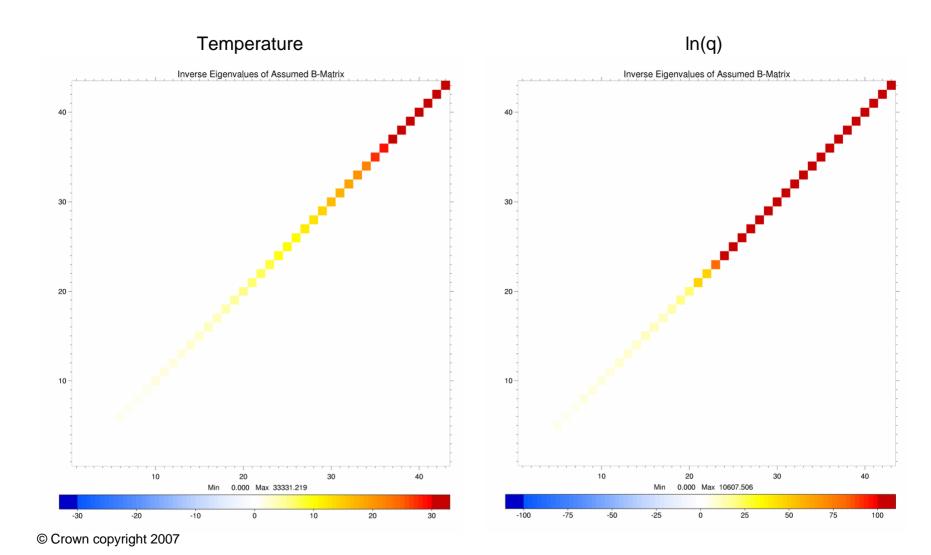


## Eigenvalues of B<sub>A</sub>: background errors in the eigenspace of B<sub>A</sub>





## Inverse eigenvalues of B<sub>A</sub>

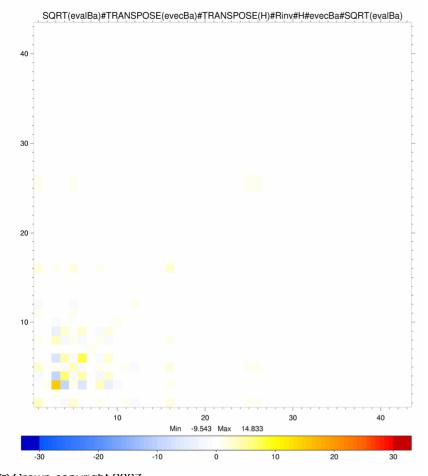


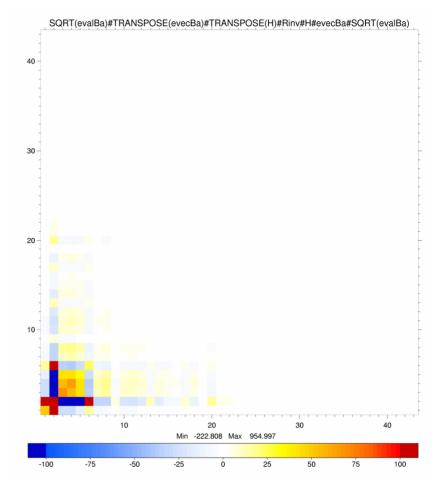


## IASI information mapped to $B_A$ eigenvectors and normalised by $B_A$ eigenvalues:

 $\Lambda^{\frac{1}{2}}.V^{T}.H^{T}.R^{-1}.H.V.\Lambda^{\frac{1}{2}}$ 

### Temperature Instrument noise + forward model error In(q)







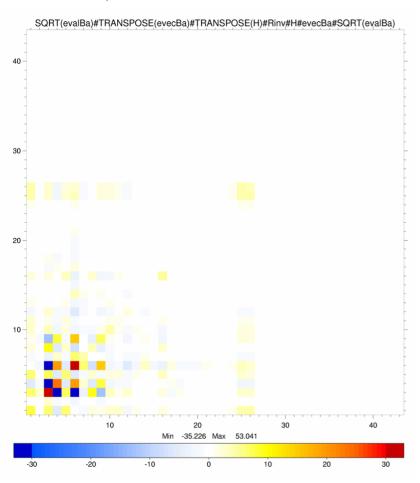
## IASI information mapped to $B_A$ eigenvectors and normalised by $B_A$ eigenvalues:

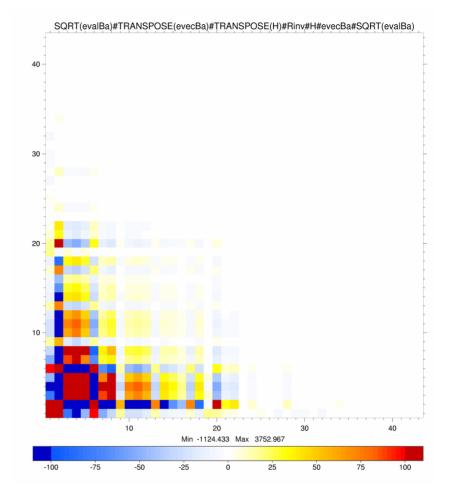
 $\Lambda^{\frac{1}{2}}.V^{T}.H^{T}.R^{-1}.H.V.\Lambda^{\frac{1}{2}}$ 

#### **Temperature**

#### Instrument noise only



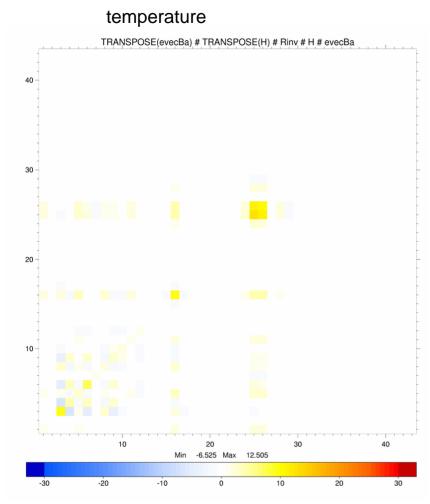


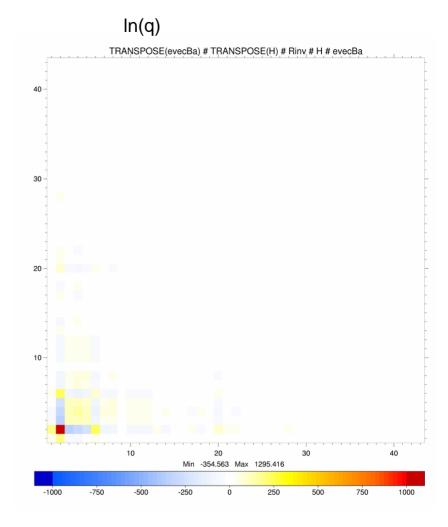




## IASI observation error mapped to eigenvectors of $B_A$ : $V^T.H^T.R^{-1}.H.V$

observation error = instrument noise + forward model error







## IASI observation error mapped to eigenvectors of B<sub>A</sub>

observation error = instrument noise only

