

Derivation of AMVs from single-level retrieved MTG-IRS moisture fields

Laura Stewart, John Eyre

© Crown copyright Met Office

18th International TOVS Study Conference 23rd March 2012

Objectives

- Utilise high temporal and spatial resolution of MTG-IRS data
- Feature tracking using 3D moisture retrieval fields

Motivation

- AMVs typically derived by tracking tracers (ie. clouds) in WV, IR and VIS channels
- Height assignment is main source of error
- Tracking on model levels = no need for height assignment

Studies

- Use Met Office UKV 1.5km model to generate simulated spectra
- Use NWPSAF 1DVar retrieval to generate single-level humidity fields
- Use feature tracking code to generate AMVs for comparison with true model winds

MTG-IRS: Infrared sounder

- Launch ~2019 (imager launch ~2017/2018)
 - Spectral resolution of 0.625cm⁻¹ (cf IASI 0.25cm⁻¹)
 - Measurements in LWIR (800 channels 700-1210cm⁻¹) and MWIR (920 channels 1600-2175cm⁻¹)
 - Horizontal resolution ~4km; temporal resolution = 30 min
 - Vertical resolution ~1km for T and q

MTG-IRS humidity retrievals @656hPa

Met Office

© Crown copyright Met Office

Feature tracking algorithm

Modified CPTEC feature tracking software

- Target matching by minimising sum of square differences
- Correlation matching + contrast check + QC scheme
- Time interval between images = 30 minutes
- Target window size = 6x6, 8x8, 10x10, 12x12 pixels

Humidity Image 2

Good representation of true wind field

Tracking model fields: MSB and MMVD

Tracking retrieval fields @ 656hPa

Retrieval tracked winds d=6 Model tracked winds d=6 Model wind field

Humidity field at 09:30 [ppa]

Sparser distribution and much fewer winds!

0-2.5m/s No barb

Short barb

Long barb

2.5m/s

5m/s

Are the humidity retrievals too noisy?

Met Office

Gaussian multi-scale representation

- Smoothing technique
- Convolution of the image with a 2D Gaussian kernel G(x,y)
- σ^2 dictates the spread of the Gaussian function and hence the level of smoothing/range of frequencies removed
- Choose σ^2 such that the noise is reduced without smoothing away fine-scale features and strong gradients

Truth tracked vs smoothed retrieval tracked winds

Truth tracked winds d=10 (#winds = 22)

Smoothed retrieval tracked winds d=10 (#winds = 17)

Model wind field

0-2.5m/s	No barb
2.5m/s	Short barb
5m/s	Long barb

More comparable with truth tracked winds

Summary Met Office

- Feature tracking in model humidity fields provides a good representation of the true wind field
 - Best results in mid-troposphere comparable MMVD and MSB
- Tracking retrieval fields provides useful wind information but the quantity and distribution of the derived winds is significantly reduced relative to tracking model fields
 - Retrieval fields too noisy
 - Good quality but fewer AMVs
- Gaussian smoothing can eliminate the noise from the retrievals
 but still retain much of the trackable structure
 - Increased number of AMVs
 - Increased MMVD
 - Future work optimal sigma? error thresholds?

Questions and answers

© Crown copyright Met Office

Water vapour as a passive tracer @ 656hPa

Model field Q

Relative change in humidity not due to advective motion (Q-Q^A)/Q

© Crown copyright Met Office

Smoothed retrievals @ 656hPa

fice Retrieval field

Smoothed retrieval field (sigma=1.0)

Smoothed retrieval field (sigma=3.0)

smoothed q field [ppmv]

smoothed q field [ppmv]

© Crown copyright ivier Onice

Comparison metrics

Simulation study allows for direct comparison with UKV model winds

$$MSB = \frac{1}{N} \left(\sqrt{u_T^2 + v_T^2} - \sqrt{u_D^2 + v_D^2} \right) \equiv \frac{1}{N} \left(V_T - V_D \right)$$

$$MMVD = \frac{1}{N} \sqrt{V_{T}^{2} + V_{D}^{2} - 2V_{T}V_{D}\cos|\theta_{T} - \theta_{D}|}$$

where u_T , v_T , V_T , θ_T relate to the true winds u_D , v_D , V_D , θ_D relate to the derived winds