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Abstract 
 
When assimilating observations into numerical weather prediction (NWP) models, it is usually 
assumed that there are two sources of information: the observations and the NWP background field.  
Current research to improve the exploitation of advanced infra-red sounder data is making use of 
“radiance climatologies”, i.e. large ensembles of “historical” radiances from the same instruments.  The 
leading principal components (PCs) of the covariances of such ensembles are being used to make the 
processing and assimilation of these data more efficient - in both the forward (radiative transfer) 
computation and the inverse (retrieval/assimilation) component - and to reduce the noise in the 
measured spectra.  These radiance climatologies therefore constitute a potential third source of 
information for retrieval/assimilation processes.   
 
We consider here, from a theoretical perspective, the status of this third source of information and its 
implications for retrieval/analysis accuracy.  We compare two methods of applying PCs to the 
processing of IASI spectra: simple PC truncation and optimal radiance estimation.  We show why it is 
possible to reduce the noise in IASI Level 1C data considerably (by a factor ~3), yet this does not lead 
to comparable reductions in retrieval/analysis error.  We also present the theory required to consider 
whether it is possible, with information from the radiance climatology, to reduce the retrieval error at 
all.  
 
 
1. Introduction 
 
Advanced hyper-spectral infra-red instruments for sounding the atmosphere provide thousands of 
observations in each measured radiance spectrum.  For example, the Infra-red Atmospheric Sounding 
Interferometer (IASI) (Siméoni et al. 1997) on the Metop satellite series has 8461 channels, and the 
Atmospheric InfraRed Sounder (AIRS) (Pagano et al. 2003) on the Aqua satellite has 2378 channels.  
The length of this radiance vector greatly exceeds the number of independent atmospheric variables for 
which the observations carry information.  For the atmospheric temperature and humidity profiles, this 
number is measured in tens and is related to the vertical resolution of the measurement and to measures 
of information content such as degrees of freedom for signal (See Collard 2007, Prunet et al. 1998, 
Rabier et al. 2002).  In addition to the variables needed to represent adequately the temperature and 
humidity information, many more are required to explain fully the effects of clouds, aerosols, surface 
emissivity, etc., and the effects of nonlinearities.  However, altogether the total number is probably in 
the range 200-300; studies have found that this is the number of principal components (PCs) of the 
covariance of a large climatological set of radiance vectors that are needed to reconstruct any radiance 



 

vector to within the instrument noise (Goldberg et al. 2003, Hultberg 2009). 
 
Therefore the information content of each measurement vector is highly redundant.  This raises the 
question: is it possible to exploit this feature to improve the interpretation of the observations?  In this 
paper, we examine the nature of the information contained in “radiance climatologies” (RCs), by which 
we mean large, representative samples of past measurements from the same instrument, and we explore 
how such RCs can be used to improve the extraction of atmospheric information from the data.  We 
also draw attention to the limitations of this approach.   
 
Truncated PC representations of multi-spectral radiance observations have been used for many years, 
e.g. Smith and Woolf (1976), to reduce the dimension of the observation vector and thus to make data 
processing more efficient.  In more recent years, they have been applied to spectra from hyper-spectral 
sounders, for which the efficiency gains are potentially much greater.  They have been used with 
aircraft interferometer data, in anticipation of their use with satellite data (Huang and Antonelli 2001, 
Antonelli et al. 2004), with AIRS data (Goldberg et al. 2003) and with IASI data both pre- and post-
launch (e.g. Aires et al. 2003, Hultberg 2009, EUMETSAT 2010, Collard et al. 2010, Atkinson et al. 
2010).  In these studies and applications, the data compression and noise reduction properties of PC 
representations, and of radiance spectra reconstructed from them, have been demonstrated, and the use 
of PC scores as input to retrievals and for quality control has been discussed. 
 
In this paper, we step back from previous work on truncated PCs to take a fresh look at role of RCs 
from the perspective of optimal estimation (OE) theory, and we consider the use of truncated PCs as a 
special case of a more general use of RCs.  It is clear from previous work that, via truncated PC 
representations of the spectrum, RCs offer a much improved efficiency in processing of hyper-spectral 
data.  In this paper, we address the following questions: in obtaining this increased efficiency, (1) is 
there a small (perhaps insignificantly small) loss of information, as suggested by the truncated PC 
formulation, or (2) do the RCs provide additional information which allows us to make improved 
retrievals (perhaps insignificantly improved), or (3) do they make no difference to retrieval skill, if the 
various sources of information, error covariances, etc., are all handled optimally? 
 
In Section 2, we show how the true (noise-free) radiance vector associated with a single measurement 
may be estimated in an optimal way from the measured radiances and a climatology of prior radiance 
measurements.  We examine the relationship between this optimal estimate and an estimate obtained 
using a truncated PC representation of the spectrum, and we draw attention to some of the matrix ill-
conditioning problems that arise.  These ideas are illustrated with calculations for IASI spectra. 
 
In Section 3, we present the theory for using these new estimates of the radiance vector (derived 
optimally or through PC truncation) for the retrieval of the atmospheric state.  This represents the first 
part of a study to assess the questions: could the use of information in RCs have advantages in terms of 
reduced retrieval error and, if so, could these reductions be significant? 
 
Section 4 presents a summary of the results and conclusions to date. 



 

2. Optimal estimation of radiance vectors  
 
2.1 Basic optimal estimation theory  
 
Whenever we make a new observation, the information available to us in the radiance space is: 

• the observed radiance vector, yo, and its error covariance (instrument noise), N, and 
• the RC obtained from previous observations. 

Let us characterise the RC of the true (noise-free) radiances by its mean radiance, ym, and its 
covariance, C. 
 
We assume here that N is independent of the measurement itself and is constant in time.  For real 
hyper-spectral instruments this should be valid, at least approximately, if the measurements are 
expressed as radiances (but not as brightness temperatures). 
 
We can combine this new measurement with the RC to give an optimal estimate, y’, of the true 
radiance vector and its error covariance, Q, using simple linear OE theory: 
 
 y’  =  Q (N-1 yo +  C-1 ym)  ,       (2.1) 
 
 Q-1  =  N-1  +  C-1  ,        (2.2) 
 
Equations (2.1) and (2.2) can be rearranged in many ways, e.g. 
 
 y’  =  ym  +  C (C+N)-1 (yo - ym)  ,      (2.3) 
 
 y’  =  yo + N (N+C)-1 (ym - yo)  ,       (2.4) 
 
 Q  =  N (N+C)-1 C  =  N - N (N+C)-1 N  =  C - C (C+N)-1 C  .   (2.5) 
 
Note that the climatological covariance obtained from a large set of measurements is not C but Co: the 
sum of the true (noise-free) radiance covariance and the noise covariance: 
 
 Co  =  C + N  .         (2.6) 
 
Combining equations (2.3) and (2.6): 
 

y’  =  ym + (Co - N) (Co)-1 (ym - yo)  .      (2.7) 
 
This provides the optimal estimate of the radiance vector with an error covariance given by eq.(2.5). 
 
 



 

 
 
Fig.1. Illustrating noise reduction through optimal radiance estimation.   The PDFs of the 
observed radiances, the radiance climatology and the optimal estimate are given by the (red) 
circle, the large (black) ellipse and the small (green) ellipse respectively.  The centre of the cross 
is the mean of the radiance climatology. 
 
 
Figure 1 illustrates geometrically the properties of the optimal estimate.  If a radiance vector is 
represented by a point in an M-dimensional hyperspace, then probability density functions (PDF) of the 
radiances can be represented by hyper-ellipsoids in this space.  If we normalise the radiance in each 
channel by the standard deviation of the instrument noise, then equi-probable surfaces for the 
observations will be hyper-spheres in this space.  In Fig.1 we show a 2D section through this 
hyperspace passing through the observation, where the axes of the section are chosen such that: in one 
direction the variance of the climatology of the (noise-free) radiances is much greater than the 
instrument noise, and in the other it is much less.  In this way, the circle represents the PDF of the 
observation and the large ellipse represents the PDF of the noise-free climatology (which is not in 
general co-centred with the observation).  The small ellipse then represents the PDF of the optimal 
estimate.   It is only slightly smaller than the circle in one direction but much smaller in the other.  
Thus the optimal estimate is an improved estimate of the radiances, but only significantly so in those 
directions for which the variance of the RC is comparable to or smaller than the instrument noise. 
 
 
2.2 Relationship to PC truncation  
 
What is the relationship between this optimal estimate and the estimate given by PC truncation?  In the 
process of PC truncation (Goldberg et al. 2003, Hultberg 2009), it is usual to noise-normalise Co and 
then calculate its eigenvectors, E, and eigenvalues, λj (which are diagonal elements of the diagonal 
matrix, Λ): 
 
 N-½ Co N-½  =  E Λ ET  .        (2.8) 
 
Therefore, 
 
 Co  =  N½ E Λ ET N½  ,        (2.9) 
 
and (Co)-1  =  N-½ E Λ-1 ET N-½  .       (2.10) 
 
From eq.(2.7) and (2.10): 
 

y’  =  ym + {N½ E} (Λ - I) Λ-1 {ET N-½} (yo - ym)  ,    (2.11) 



 

 
The matrix (Λ-I)Λ-1 is a diagonal matrix with diagonal elements 
 
 qi  =  (λi - 1) / λi .        (2.12) 
 
We call the values qi the “PC weights”. 
 
Equation (2.12) represents the following set of operations: 

• noise-normalise the observed radiance departures from the mean radiance, and project them on 
to the eigenvectors (i.e. form the PC scores), 

• scale each PC score by its PC weight, 
• project the scaled PC scores back into the radiance space, 
• add these increments from the mean radiance to form the optimal estimate. 

 
This is similar to the method of PC truncation.  The difference is that here the PC scores are not simply 
accepted or rejected but scaled by their PC weights.  The effect will be to “accept” (qi ≈ 1) all the 
modes that are predominantly signal and to “reject” (qi ≈ 0) all the modes that are predominantly noise, 
with a smooth transition in between.  Moreover, the noise in the accepted modes will remain almost 
unchanged whereas the noise in the rejected modes will be reduced to zero. 
 
 
2.3 Ill-conditioning problems 
 
Combining equations (2.6) and (2.9), we obtain: 
 
 C  =  N½ E (Λ - I) ET N½  ,       (2.13) 
 
or C-1  =  N-½ E (Λ - I)-1 ET N-½  ,       2.14) 
 
where I is a unit matrix. 
 
This means that, as eigenvalues of N-½CoN-½ tend to 1, then the equivalent eigenvalues of N-½CN-½ will 
tend to 0.  As discussed in section 1, the IASI spectrum contains only ~200 pieces of independent 
information in ~8000 channels.  This means that, in the geometric representation of Fig.1, in most 
directions Co represents only instrument noise and so C is vanishingly small; the hyper-ellipsoid 
becomes a “hyper-disc”.  In eq.(2.9) and (2.13), λj ≈ 1 for most j, and so (Λ - I) and hence C will be 
highly ill-conditioned.  Also, through eq.(5), Q will also be highly ill-conditioned as can be seen from 
Fig.1.  This will lead to computational problems in any calculation involving C-1 or Q-1 or (Λ - I)-1. 
 
We can address these ill-conditioning problems by transforming the measurement into a new space, i.e. 
the eigenspace of the noise-normalised RC, and truncating it appropriately.  We define the observation 
in the new space as: 
 
 ztr  =  Etr

T N-½ (yo - ym)  ,        (2.15) 
 
where subscript tr denotes an appropriately chosen truncation of the full set of eigenvectors. 
 



 

In this space the RC has a mean value of 0 and a covariance of (Λtr - Itr).  The optimally estimated 
measurement in the new space, equivalent to equations (2.11) or (2.12) is: 
 
 ztr’  =  Qtr Etr

T N-½ (yo - ym)  ,       (2.16) 
 
where Qtr  =  (Λtr - Itr) Λtr

-1          (2.17) 
 
and is the error covariance of ztr’.  Qtr  is a diagonal matrix with the truncated PC weights as its 
diagonal elements. 
 
 
2.4 Application to IASI data 
 
We start our computations from observed IASI “climatological” covariance matrices supplied by 
EUMETSAT and used by EUMETSAT to compute operational PC scores (Hultberg 2009, 
EUMETSAT 2010).  They are supplied separately for the 3 IASI bands: band 1, channels 1-1997 (645-
1144 cm-1); band 2, channels 1998-5116 (1144.25-1923.75 cm-1); band 3, channels 5117-8461 (1924-
2760 cm-1).  Each covariance matrix is formed from ~100000 spectra.  We noise-normalise these 
matrices using a full matrix N which takes account of the apodisation of IASI Level 1C data, using an 
apodisation matrix as described by Lee and Bedford (2004).   
 
The eigen-decomposition of the noise-normalised matrix then gives the values of λi (eq. 2.8) and then 
the PC weights (eq. 2.18).  The PC weights for IASI band 1 are shown in Fig.2. 
 

 
 
Fig. 2. PC weights (black line) for the leading 500 PCs for IASI band 1, and equivalent PC 
weights (red line) for simple PC truncation at the 90th PC. 
 



 

Figure 2 illustrates the relationship between optimally estimated radiances and simple PC truncation; in 
the latter the PC weight equals one for each leading PC and zero beyond the truncation point, whereas 
for the former the reduction in PC weights is gradual. 
 
Diagonals of N and of Q in the original radiance space are shown for IASI band 1 in Fig.3. 
 

 
 
Fig.3.  Noise standard deviations (square roots of the diagonals of covariance matrices) for 
channels in IASI band 1.  Upper line (black): Level 1C radiances; lower line (red): optimally 
estimated radiances. 
 
Figure 3 shows the effect of optimal estimation on the measurements when they are projected back into 
the original radiance space.  The noise is reduced by a factor of ~3-4.  The values for simple PC 
truncation (not shown) are similar. [For unapodised spectra, for which the noise power is expected to 
be distributed equally amongst all the PCs, simple PC truncation is expected to reduce the noise power 
by the ratio of the total number of channels to the number of PCs retained.  For IASI band 1, this 
would be 1997/90 = 22.2 for noise variance, or 4.7 for its standard deviation.  This value is expected to 
be reduced for Level 1C spectra because of the adopisation process.] 



 

3. Consequences for the retrieval of atmospheric variables 
 
The noise reduction possible through optimal estimation of the radiances or through PC truncation is 
very great, but to what extent are we able to benefit from this when retrieving atmospheric variables?  
We now explore this question from two theoretical perspectives.   
 
 
3.1 Radiance climatology as prior information on the observations 
 
It is instructive to return to the Bayesian probability theory from which optimal estimation can be 
derived (see Rodgers 1976).  The conditional probability of the atmospheric state x given the 
measurements yo is given by: 
 
 P(x|yo)  =  P(yo|x) P(x) / P(yo)  ,       (3.1) 
 
where P(x) is the prior probability of x, P(yo) is the prior probability of yo, and P(yo|x) is the conditional 
probability of yo given x. 
 
The most probable value of x is obtained by maximising P(x|yo) with respect to x.  This is equivalent to 
maximising ln{P(x|yo)} which, with the addition of a constant, gives the usual “cost function” J(x) 
used in variational analysis (see Lorenc 1988): 
 
 J(x)  =  k1 - ln{P(x|yo)}  =  k1 - ln{P(yo|x)} - ln{P(x)} + ln{P(yo)}  .  (3.2) 
 
If the probability functions are Gaussian, the terms in the cost function will take their normal quadratic 
form, but eq.(3.2) shows how to obtain the appropriate cost function if the probabilities are other than 
Gaussian. 
 
The final term in eq.(3.2) is usually absorbed into the constant and ignored.  This is because the prior 
probability of the observations, P(yo), is usually assumed to be constant across the range of values for 
which it is physically possible for the instrument to record values (and to be zero outside this range). 
 
Now, if we have prior knowledge of yo through a RC, then it is possible to replace the constant P(yo) by 
a Gaussian of the form: 
 

ln{P(yo)}  =  k2 - {(yo - ym)T (Co)-1 (yo - ym)}  ,     (3.3) 
 
where yo, ym and Co are as defined in Section 2, and k2 is a normalising constant. 
 
The use of eq.(3.3) for ln{P(yo)} clearly changes the form of the cost function, and it will change the 
value of J(x) for a given yo.  This may be important whenever the value of J(x) itself is used as part of 
the retrieval/analysis process, e.g. in quality control.  However ln{P(yo)}, although no longer constant, 
is not a function of x.  When we seek the optimal value of x by differentiating eq.(3.2) with respect to 
x, the term involving ln{P(yo)} is lost, and so it can have no effect on the optimal value of x. 
 
Therefore, from this perspective, i.e. with a mathematical statement of the problem to be solved 
represented by equations (3.1)-(3.3), we conclude that: the additional information contained in the RC, 



 

whilst it allows us to improve certain components of our estimate of the radiance vector, does not allow 
us to improve our estimate of x. 
 
 
3.2 Radiance climatology as a third source of information 
 
In Section 2 we have shown how a measurement yo, with expected error covariance N, may be 
combined with a climatological estimate ym, with expected error covariance C, to provide an improved 
estimate of the radiance vector y’ with expected error covariance Q.  We can now use this improved 
estimate to obtain an estimate of the atmospheric state. 
 
Variational theory (e.g. see Lorenc 1988, Rodgers 1976) provides us with a framework for combining 
new observational information with prior information on the atmospheric state, in the form of an 
estimate xb with expected error covariance B, to give a new estimate xa with expected error covariance 
A.  
 
Consider first the estimation of x from the original observations yo.  Starting from Bayesian theory, we 
derive a cost function of the form: 
 
 J(x)  =  (x - xb)T B-1 (x - xb)  +  { (yo - y(x))T (N + F)-1 (yo - y(x)) }  ,  (3.4) 
 
where y(x) is the “observation operator”, which computes the radiances expected given the state x, and 
F is the error covariance of the observation operator. 
 
By linearising the problem it can be shown that the error covariance of the solution, A, is given 
(exactly, in the linear limit) by: 
 
 A  =  B  -  B HT (H B HT + N + F)-1 H B  ,     (3.5) 
 
or A-1  =  B-1  +  HT (N + F)-1 H   ,       (3.6) 
 
where H is the radiance Jacobian, i.e. the gradient of y(x) with respect to x. 
 
Now, when yo and its error covariance N are replaced by the new estimates, y’ and Q, the equivalent 
equation for the error covariance is: 
 
 A’  =  B  -  B HT (H B HT + Q + F)-1 H B  .     (3.7) 
 
or A’-1  =  B-1  +  HT (Q + F)-1 H   ,       (3.8) 
 
The evaluation of equation (3.7) or (3.8) is problematic because of the ill-conditioning problems 
discussed in section 2.3.  These can be addressed by working in the transformed, truncated radiance 
space described in that section.  In transformed space, the Jacobians are given by: 
 
 HPC  =  ET N-½ H  ,        (3.9) 
 
and in the truncated, transformed space by: 



 

 
 (HPC)tr  =  Etr

T N-½ H  .        (3.10) 
 
In the limit of F=0, the equations for error covariances are as follows: 
 
for all channels or all PCs:  A-1  =  B-1 + HT N-1 H  =  B-1 + HPC

T HPC  , (3.11) 
 
for truncated PCs:   A-1  =  B-1 + (HPC)tr

T (HPC)tr  ,   (3.12)  
 
for optimally estimated radiances: A-1  =  B-1 + (HPC)tr

T Qtr
-1 (HPC)tr  .  (3.13)  

 
The limit of F=0 is, of course, unrealistic for assimilation/retrieval with real data.  If the forward model 
error F has been absorbed, such that N and Q are estimates of total error (i.e. including forward model 
error), then equations 3.11-3.13 would be valid.  However, note that now the noise-normalisation based 
on instrument noise only is not optimal; a renormalisation including the effects of forward model error 
would be appropriate for the retrieval/analysis problem. 
 
 
4. Summary and conclusions 
 
PCs of radiance climatologies have demonstrated “engineering” advantages – for data compression and 
for efficient radiative transfer calculations, with consequent efficiencies for retrieval and assimilation 
operations.  The work presented here is the first part of a study to explore the questions: do PCs of 
radiance climatologies have additional scientific advantages in terms of reduced retrieval error and, if 
so, are the reductions significant? 
 
We have introduced the context of optimal radiance estimation and shown its relationship to a 
truncated PC representation of the spectrum.  We have shown that optimally-estimated radiances (as 
with radiances reconstructed from truncated PCs) give a large reduction in noise compared with the 
original radiances.  However, noise is removed mainly in “directions” (in radiance space) that contain 
no atmospheric information, and so this reduction is not expected to lead to dramatic reductions in 
retrieval error. 
 
Nevertheless, it is interesting to quantify what reductions, if any, will be possible in retrieval error, and 
further work is planned on this quantification for IASI using the theory presented in section 3. 
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