The 22nd International TOVS Study Conference (ITSC-22) Assimilation of new hyperspectral infrared instruments

The evaluation of GIIRS longwave temperature sounding channels using GRAPES 4D-Var

Ruoying Yin, Wei Han, Zhiqiu Gao, Di Di <u>yinruoying15@mails.ucas.edu.cn</u>

> IAP/CAS NWPC/CMA 2019.11.04

◆ GIIRS is <u>the first high-spectral-resolution</u> advanced IR sounder on board a <u>geostationary weather</u> <u>satellite</u>. It is very capable of monitoring, warning and forecasting high-impact weather events due to its high temporal and spatial vertical resolutions.

Spectral coverage: LWIR(700-1130cm-1, 689channels) MWIR(1650-2250cm-1, 961channels)

Spectral resolution: 0.625cm⁻¹

Spatial resolution: 16km

Temporal resolution: 2.5h on August 2017

2h after December 6, 2018 (regional area)

Yang J, Zhang Z, Wei C, et al. Introducing the new generation of Chinese geostationary weather satellites – FengYun 4 (FY-4)[J]. Bulletin of the American Meteorological Society, 2016.

Normalized weighting functions and temperature Jacobians of GIIRS temperature sounding channels

Scanning zone of GIIRS

2. Quality control

Cloud detection

based on collocated AGRI cloud products

Outliers elimination

using Bi-weight Check

Observations: brightness temperatures after the hamming apodization.

Simulations: the 6-hour forecast field of GRAPES-GFS as the background field.

Upper troposphere

11

Middle troposphere

Lower troposphere

Channel 87

After bias correction

FOV & Air mass bias correction <u>Prediction factors:</u> 1000-300hPa, 200-50hPa and 50-10hPa; the surface temperature of the model and the satellite zenith angle for GIIRS observations.

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

0.8

0.9

0.3

0.4 0.5 0.6 0.7

0.1 0.2

4. Channel selection

Channel Blacklist

4. Channel selection

Entropy reduction: $ER = \frac{1}{2}\log_2(\frac{|\mathbf{B}|}{|\mathbf{A}|})$ $\mathbf{A}_{i} = \mathbf{A}_{i-1} \left(\mathbf{I} - \frac{h_{i} \left(\mathbf{A}_{i-1} h_{i} \right)^{T}}{1 + \left(\mathbf{A}_{i-1} h_{i} \right)^{T} h_{i}} \right)$ $\mathbf{A}^{-1} = \mathbf{B}^{-1} + \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}$ $\mathbf{K} = \mathbf{A} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}$ $x_{a} = x_{b} + \mathbf{K} (y - y_{b})$

5. Conclusions

1.<u>The mean biases</u>: $\pm 2K$ after quality control and $\pm 0.02K$ after bias correction except for the contaminated channels.

2.<u>FOVs dependencies:</u> smaller near the center of FOR, maximum values in the 32nd and 96th FOVs.

3.Latitudinal dependences: due to the FOVs array observation model and satellite zenith angle.

4.<u>Diurnal variation</u>: significant, may related to the solar elevation angle.

5.<u>Channel selection:</u> GIIRS longwave sounding channels.

REFERENCES:

- Desroziers G, Berre L, Chapnik B, et al. Diagnosis of observation, background and analysis-error statistics in observation space[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(613):3385-3396.
- Guidard, V., N. Fourrié, P. Brousseau, and F. Rabier (2011), Impact of IASI assimilation at global and convective scales and challenges for the assimilation of cloudy scenes, Q. J. R. Meteorol. Soc., 137, 1975–1987.
- Han Wei and Niels Bormann, 2016, Constrained adaptive bias correction for satellite radiance assimilation in the ECMWF 4D-Var system, ECMWF Technical Memoranda, 783.
- Li, J., P. Wang, H. Han, J. Li, and J. Zheng, 2016: On the assimilation of satellite sounder data in cloudy skies in the numerical weather prediction models. J. Meteor. Res., 30, 169–182
- Mcnally A P, Watts P D, Smith J A, et al. The assimilation of AIRS radiance data at ECMWF[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132(616):935-957.
- Pangaud, T., N. Fourrie, and V. Guidard (2009), Assimilation of AIRS radiances affected by mid- to low-level clouds, Mon.
 Weather Rev., 137,4276–4292.
- Prunet, P., Thépaut, J.N., Cassé, V., 1998. The information content of clear sky IASI radiances and their potential for numerical weather prediction. Q. J. R. Meteorol. Soc.124 (545), 211–241.
- Schmit T J, Li J, Ackerman S A, et al. High-Spectral- and High-Temporal-Resolution Infrared Measurements from Geostationary Orbit[J]. Journal of Atmospheric & Oceanic Technology, 2009, 26(11):2273-2292
- Yang J, Zhang Z, Wei C, et al. Introducing the new generation of Chinese geostationary weather satellites FengYun 4 (FY-4)[J]. Bulletin of the American Meteorological Society, 2016

Thank you for your attention!