

## Assessment & Assimilation of FY-3D HIRAS in the Met Office System

Fabien Carminati, Met Office Xianjun Xiao, NSMC CMA Qifeng Lu, NSMC CMA Nigel Atkinson, Met Office

# **Specifications**

#### Hyperspectral Infrared Atmospheric Sounder (HIRAS)

| Parameters                          | Specification |
|-------------------------------------|---------------|
| Scan Period (s)                     | 10            |
| View angle (°)                      | 1.1           |
| Scan angle (°)                      | $\pm 50.4$    |
| Radiative calibration accuracy (K)  | 0.7           |
| Spectral calibration accuracy (ppm) | 7             |
| Direction pointing bias (°)         | ± 0.25        |
| Pixels per scan                     | 116           |



|     | Band       | Spectral Range (cm <sup>-1</sup> ) | Spectral Resolution (cm <sup>-1</sup> ) | No of channels |  |  |
|-----|------------|------------------------------------|-----------------------------------------|----------------|--|--|
|     | Long-wave  | 650 - 1136                         | 0.625                                   | 777            |  |  |
| FSR | Mid-wave   | 1210 - 1750                        | 0.625                                   | 865            |  |  |
|     | Short-wave | 2155 - 2550                        | 0.625                                   | 633            |  |  |
|     |            |                                    |                                         |                |  |  |
|     | Long-wave  | 650 - 1136                         | 0.625                                   | 777            |  |  |
| NSR | Mid-wave   | 1210 - 1750                        | 1.25                                    | 432            |  |  |
|     | Short-wave | 2155 - 2550                        | 2.5                                     | 158            |  |  |

# **Pre-processing**

- 2 months (Feb-Mar 2019) of HIRAS FSR (2275 channels) data prepared by CMA in HDF5 format.
- Ingestion in the AAPP version 8.4 [1] and conversion to level 1c binary format using the tool *hiras\_sdr* (incl. Hamming apodization).
- o Degradation to NSR (1367 channels) using the AAPP tool *hiras\_degrade\_fsr.*
- o Channel selection (399 channels) identical to that currently used for CrIS [2, 3].
- Conversion to BUFR format using a locally-defined BUFR sequence (available through AAPP) and stored in the Met Office's observation database.



# **Background Departures**



# **Calibration Anomaly**





Calibration anomaly for detector 3 when the instrument exits the shadow of Earth at solar zenith angle ~ 100-120°. Possible contamination of the cold calibration view by direct of reflected sunlight.

Day

Earth

Night

Clear-Sky / Ocean Only

#### **Met Office**

# **Double Difference Against CrIS**



# **Assimilation Experiments**

○ Low resolution N320L70 UM, N108/N216 4D-Var uncoupled hybrid assimilation full global system.

- Thinning and channel selection are similar to those used for CrIS (but ocean only).
- Observation covariance matrix estimated for 1D-Var (and used in 4D-Var as a day-1 approach) following
  - a similar methodology used by [4].
- Variational bias correction
  coefficients have been spun up offline with a low resolution 4D-Var
   cycling suite for two months.



## **Assimilation Experiments**

#### -0.31% RMSE difference against observations

| NH_PMSL | • | ÷ | 1 | 1 |     |     | ٠ |   | 1 |    |   |    | 1  |   |     | surf    |
|---------|---|---|---|---|-----|-----|---|---|---|----|---|----|----|---|-----|---------|
| NH_W250 | • | • | ٠ | • | ٠   |     |   | ٠ | ٠ | •  | • | •  |    |   |     | AMDARS  |
| NH_W500 | ٠ | ٠ | ٠ | ٠ |     |     | ٠ | ٠ | ٠ |    |   | ٠  |    |   |     | sondes  |
| NH W850 |   |   | ٠ | ٠ |     |     |   |   |   |    |   |    |    |   |     | Satwind |
| NH_W10m | • |   | · | • | •   |     |   |   |   |    |   |    |    |   |     | surf    |
| NH_T250 | ٠ | ٠ | ٠ | ٠ | •   |     | ٠ |   |   |    |   | •  |    |   |     | sondes  |
| NH_T500 | • | ۳ | ٠ | · | ٠   |     | ٠ |   |   | ٠  | ۳ | ٠  |    |   |     | sondes  |
| NH T850 | 1 |   |   |   |     |     |   |   | ٠ |    | ٠ |    | ٠  |   |     | sondes  |
| NH_T_2m |   |   |   |   |     |     |   |   |   |    |   |    |    |   |     | surf    |
| NH_Z250 | ٠ | ٠ | ٠ | · |     |     | ٠ | ٠ | ٠ | ۷  | ٠ | ٠  | ٠  |   |     | sondes  |
| NH_Z500 | • | ٠ | ٠ | • | •   |     | * |   | ٠ | ٠  | ٠ | ٠  | ٠  |   |     | sondes  |
| NH_Z850 | • | ۳ | ٠ | • |     |     | ٠ | ٠ | ٠ |    | • | ٠  | ٠  | ٠ |     | sondes  |
| TR_W250 | ٠ | ٠ |   |   | ٠   |     |   |   |   |    |   |    |    |   |     | AMDARS  |
| TR_W500 | ٠ | ٠ | ٠ |   |     |     |   |   | ٠ |    | ٠ |    |    |   |     | sondes  |
| TR_W850 | ٠ | ٠ |   | • |     |     |   | ٠ | ٠ | •  |   |    |    | ۷ |     | Satwind |
| TR W10m | • | ٠ | • |   |     | •   |   |   |   |    |   | •  |    |   |     | surf    |
| TR T250 | v | • | ٠ |   |     |     |   |   |   |    |   |    |    |   | 1   | sondes  |
| TR T500 | • |   | ٠ | ٠ | ٠   |     | ۳ | ٠ | ۷ | ۷  | ٠ | ٠  |    |   |     | sondes  |
| TR T850 |   | ۳ |   |   |     |     |   |   |   | •  |   |    |    | • |     | sondes  |
| TR T 2m |   | ٠ |   |   |     |     |   |   |   |    |   |    |    |   |     | surf    |
| SH PMSL | • | • | ٠ |   |     |     |   | ۰ | ۷ | ۳  | ٠ |    |    |   |     | surf    |
| SH W250 | ٠ | ٠ | ٠ | ٠ |     |     |   |   | • | ٠  | ٠ | ٠  |    |   | 1   | AMDARS  |
| SH_W200 |   | v |   | ٠ | •   |     | ٠ |   | ۷ |    | V | v  | ٠  |   | 1   | sondes  |
| SH_W850 |   | ٠ | ٠ | • | ٠   | ۷   | ٠ | ٠ | ۷ | ٠  |   |    |    |   |     | Satwind |
| SH W10m | ٠ | ٠ | ٠ | · | ·   |     | ٠ | ٠ |   |    | ٠ |    |    | • |     | surf    |
| SH T250 | v | V | V | ۷ | ۷   | ۷   | ٧ | ۷ | ۷ |    | ۷ | V  | ٠  | ٠ |     | sondes  |
| SH_T200 | ⊽ | ⊽ | ۷ | ۷ | ۷   | ۷   |   |   | ٠ | V  | V | v  | ▼  | ٠ |     | sondes  |
| SH_T850 |   | + |   |   |     |     |   | • | ٠ | V  |   | v  | V  |   | 1   | sondes  |
| SH T 2m |   |   |   |   |     |     |   |   |   |    |   |    |    |   | 1   | surf    |
| SH Z250 |   |   |   |   |     |     |   |   | ٠ | V  | v |    | •  |   | 111 | sondes  |
| SH Z500 | 1 |   |   |   |     |     |   |   |   | v  | V | ٠  | ٠  |   |     | sondes  |
| SH Z850 | ٠ | • | ٠ |   |     |     |   |   | • |    | • |    |    |   |     | sondes  |
|         | ò | ø | N | 4 | 9   | œ   | 0 | N | 4 | 9  | 8 | 0  | 2  | 4 | 8   | 1       |
|         | + | + |   | 1 | - 0 | -47 | Q | - | ŝ | S) | 0 | (N | n, | 4 | 9   |         |

#### -1.06% RMSE difference against MO analyses

| NH PMSL |      | 4                 | ۰                 | ·        | •        | 1                 |      | 1    |      |      | 1     | 1     | 1     |       |       | an |
|---------|------|-------------------|-------------------|----------|----------|-------------------|------|------|------|------|-------|-------|-------|-------|-------|----|
| NH W250 |      | ▼                 | •                 | ۷        |          | ٧                 | ٠    | •    |      |      |       |       |       |       |       | an |
| NH_W200 |      | ▼                 | ▼                 | V        | ۷        | ۷                 | ٠    | ٠    | ٠    |      |       |       |       |       |       | an |
| NH_W850 |      | ▼                 | •                 | ٧        | ۷        | ٠                 | ٠    | ٠    | ٠    |      |       |       |       |       |       | an |
| NH W10m |      | •                 | •                 | ٧        | ٠        | ٠                 |      | ٠    |      |      |       |       |       |       |       | an |
| NH T250 | 111  | ▼                 | •                 | ٧        | ٠        | ٠                 | •    | ٠    |      |      |       |       |       |       |       | an |
| NH_1200 |      | ▼                 | ▼                 | V        | ۷        | ۳                 | ٠    | ٠    | ٠    |      |       |       |       |       |       | an |
| NH_T850 |      | ۳                 | ۳                 | ٠        | ٠        | ٠                 | ٠    | ٠    | ٠    |      |       |       |       |       |       | an |
| NH_T_2m |      | ۳                 | ۳                 | ٠        | ٠        | ٠                 | ٠    | ٠    | ٠    | ٠    |       |       |       |       |       | an |
| NH_Z250 |      | •                 | ▼                 | ٠        | ۷        | ٠                 | ٠    | ٠    | ٠    |      |       |       |       |       |       | an |
| NH_Z500 |      | ▼                 | ▼                 | ٠        | *        |                   |      | ٠    | ٠    |      |       |       | ٠     |       |       | an |
| NH_Z850 |      | •                 | ٠                 | ٠        |          |                   | ٠    | ٠    |      |      |       |       |       |       |       | an |
| TR W250 |      | ▼                 | v                 | ۷        | ۷        | ٠                 | ٠    | ٠    |      | ٠    |       |       |       |       |       | an |
| TR_W500 |      | ▼                 | ▼                 | ₹        | V        | ۷                 | ۷    | ٧    | ٧    | ۷    | ٠     | ٠     | ٠     |       |       | an |
| TR_W850 |      | ▼                 | •                 | ۷        | ۷        | ۷                 | ۳    | ٠    | ۷    | ۷    | ٠     | ٠     | ٠     | ۷     |       | an |
| TR W10m |      | •                 | v                 | ٧        | ٠        | ٧                 | ۷    | ٠    | ٠    | ٠    | ٠     | ٠     | ٠     | ٧     |       | an |
| TR T250 | 111  | ▼                 | •                 | ٠        | ٠        | ٠                 | ٠    | ٠    | •    |      |       |       |       |       |       | an |
| TR T500 |      | ▼                 | ▼                 | ▼        | ⊽        |                   | •    | 7    | ₹    | ۷    | ۷     | ٧     |       | ۷     |       | an |
| TR T850 |      | •                 | v                 | ٧        | ۷        | ۷                 |      | ٠    | ٠    | ٠    | ٠     | ٠     | ٠     | ٠     |       | an |
| TR T 2m |      | •                 | ۷                 | ۷        | ۷        | ۷                 | •    | ٠    | ٠    | ٠    | ٠     | ٠     | ٠     | ٠     |       | an |
| SH PMSL |      | ▼                 | •                 | ۷        | ۷        | ۷                 | •    | ۷    | 7    | ۷    | ٠     |       |       |       |       | an |
| SH W250 | 111  | $\mathbf{\nabla}$ | $\mathbf{\nabla}$ | ▼        | V        | ۷                 | •    | ٠    | ٠    | ٠    | •     |       |       |       |       | an |
| SH_W200 |      | $\nabla$          | $\nabla$          | $\nabla$ | $\nabla$ | ▼                 | ⊽    | 4    | ۷    | ۷    | ۷     | ۳     | ٠     | ٠     |       | an |
| SH_W850 |      | ▼                 | $\mathbf{\nabla}$ | v        | •        | ▼                 | •    |      | ۷    | ۷    | ٠     |       |       |       |       | an |
| SH W10m |      | ▼                 | V                 | ۷        | ۷        | ۷                 | ۷    | ٧    | ۷    | ۷    | •     |       |       |       |       | an |
| SH_T250 |      | $\nabla$          | $\nabla$          | ▼        | V        | ۷                 | ۳    | ٠    |      |      |       |       |       |       |       | an |
| SH_T500 |      | $\mathbf{\nabla}$ | $\nabla$          | $\nabla$ | $\nabla$ | $\mathbf{\nabla}$ | ۷    | V    | V    | ۷    | V     | ۵     | •     | ۷     |       | an |
| SH_T850 |      | ▼                 | •                 | •        | •        | •                 | •    | ۷    | ۷    | •    | ۷     | ٠     | ٠     |       |       | an |
| SH_T_2m |      | •                 | •                 | ۷        | ۷        | •                 | •    | ۷    | 4    | •    | V     | ۷     | •     |       |       | an |
| SH Z250 |      | ▼                 | ▼                 | V        | V        | ▼                 | V    | v    | ۷    | ۷    | ۷     | ٠     | ٠     | •     |       | an |
| SH_Z500 |      | $\mathbf{\nabla}$ | ▼                 | •        | V        | ▼                 | V    | ۷    | V    | V    | ۷     | ۷     | ۷     | ٠     |       | an |
| SH_Z850 |      | ▼                 | ▼                 | ۷        | ۷        | ۷                 | •    | ۷    | 7    | V    | ٠     |       |       |       |       | an |
|         | ]0+1 | T+6               | T+12              | T+24     | T+36     | T+48              | T+60 | T+72 | T+84 | T+96 | T+108 | T+120 | T+132 | T+144 | T+168 |    |

#### -0.56% RMSE difference against ECMWF analyses

| NH_W250 |     | ۷        | ۷        | ٧ | ٣ | ٠  | 1 | 1 | 1 | 1  | 1  | 1  | 1  |    | anl |
|---------|-----|----------|----------|---|---|----|---|---|---|----|----|----|----|----|-----|
| NH_W500 |     | ۷        | ۷        | ٠ | • |    |   | ÷ |   |    |    |    |    |    | anl |
| NH_W850 |     | ۳        | ٠        | ٠ |   |    | ٠ |   |   |    |    |    |    |    | anl |
| NH_W10m |     | ٠        | ٠        | ٠ |   |    |   |   |   |    |    |    |    |    | anl |
| NH_T250 |     | •        | •        | ۷ | • | •  | ٠ |   |   |    |    |    |    |    | anl |
| NH_T500 |     | ۷        | ۷        | ۳ | ٠ | •  | ٠ | • |   |    | ٠  |    |    |    | anl |
| NH_T850 |     |          | ٠        |   |   |    |   |   |   |    |    |    |    |    | anl |
| NH_T_2m | 1   |          |          |   |   |    |   |   |   |    |    |    |    |    | anl |
| NH_Z250 |     | V        | <b>▼</b> |   |   | ٠  | ٠ | • | • |    | ٠  | •  |    |    | anl |
| NH_Z500 |     | ۷        | ۷        | ٠ |   |    | ٠ | • |   |    |    | •  |    |    | anl |
| NH_Z850 |     | ٠        | ٠        |   |   | •  | ٠ |   |   |    |    |    |    |    | anl |
| TR_W250 |     | ٧        | ٠        | ٠ |   |    |   |   |   |    |    |    |    |    | anl |
| TR_W500 |     |          | ۰        | ٠ |   | •  | ٠ | • | ٠ |    |    |    |    |    | anl |
| TR_W850 |     | ٠        | ٠        | ٠ | ٠ | ٠  | ٠ | ٠ | ٠ | ٠  | ٠  | ٠  | ٠  |    | anl |
| TR_W10m |     | ۳        | ٠        | • | • | •  | ٠ | ٠ | ٠ |    | ٠  | ٠  | ۳  |    | anl |
| TR_T250 |     |          |          |   |   |    |   |   |   |    |    |    |    |    | anl |
| TR_T500 |     | ۳        | ۳        | ۳ |   | ٠  | ۳ | ۷ | ۷ | ۷  | ۳  | ·  |    |    | anl |
| TR_T850 |     | ٧        | ٧        | ٠ | • | ٠  | ٠ | • | ٠ | ٠  | ٠  | ٠  | ٠  |    | anl |
| TR_T_2m |     |          |          |   |   | •  |   |   |   | ·  |    | ·  |    |    | anl |
| SH_W250 |     | •        | •        | ۷ |   | ۳  | ٠ | • | • | 1  |    |    |    |    | anl |
| SH_W500 |     | ▼        | ▼        | ۷ | • | ۳  |   | ۳ | • | ۳  | ٠  | ٠  |    |    | anl |
| SH_W850 |     | •        | ۷        | ۷ | • | ۷  | ٧ | ۷ | ۳ | •  |    |    |    |    | anl |
| SH_W10m |     | ۷        | ۳        | ۳ |   | ۷  | ٧ | ۷ | ۳ | ÷  |    |    |    |    | anl |
| SH_T250 |     | ▼        | ▼        | ▼ | ▼ | •  | ۷ | ۷ | ۳ | ۷  | ٠  |    |    |    | anl |
| SH_T500 |     | $\nabla$ | V        | ۷ | ▼ | •  | • | ۷ | • | ۷  | •  | ٠  | •  |    | anl |
| SH_T850 |     | ٠        | ٠        | • |   | ٠  | ٠ | ۲ | ۳ | ۷  | *  | ٠  | •  |    | anl |
| SH_T_2m | 1.1 |          |          |   |   |    |   | ٠ | ٠ | ۷  | •  | ۷  |    |    | anl |
| SH_Z250 |     | V        | ▼        | ▼ | ▼ | V  |   | • | • | •  |    | ٠  | •  |    | anl |
| SH_Z500 |     | ▼        | •        | ۷ | • | •  | ۷ | ۷ | ۷ | ۷  | •  | ۲  | •  |    | anl |
| SH_Z850 |     | ۷        | ۷        | ۷ | • | ۷  | ۷ | ۷ | ۷ | ۷  |    |    |    |    | anl |
|         | 99  | N        | 4        | 9 | œ | 0  | N | 4 | 9 | ω  | 0  | N  | 4  | 8  |     |
|         | ㅎ ㅎ | 7        | 7        | ÷ | + | +9 | + | 4 | 6 | 10 | 12 | 13 | 14 | 19 |     |
|         |     | F        | F        | F | H | F  | F | H | F | ÷  | ÷  | ÷  | ÷. | ÷  |     |

.토토토토토토토토동동동동

# **Assimilation Experiments**

# Time series of RMSE difference against MO analyses







# Summary

• HIRAS (det. 4) compares generally well to CrIS at NSR:

- $\circ~$  O-B are on average within ±0.1 K across the 399 channels,
- $_{\odot}\;$  but up to 1 K for high peaking temperature channels in the long-wave band,
- $_{\odot}~$  and up to 0.7 K for humidity channels in the mid-wave band.
- $_{\odot}~$  HIRAS standard deviation is on average 0.2 K larger than CrIS.
- Probable sunlight contamination of detector 3 deep space view affects band 2.
- Preliminary assimilation experiments (det. 4 over ocean) yield negative results when using CrIS channels selection (especially in band 2).
  - $_{\odot}\,$  HIRAS-dedicated channel selection is under investigation.
- o Complete assessment to be submitted to Remote Sensing.

# References

[1] Labrot , T., Atkinson, N. and Roquet, P., "AAPP documentation software description", NWPSAF-MF-UD-002, version 8.1, 2019, <u>https://www.nwpsaf.eu/site/software/aapp/documentation/</u>

- [2] A. Gambacorta and C. D. Barnet, "Methodology and Information Content of the NOAA NESDIS Operational Channel Selection for the Cross-Track Infrared Sounder (CrIS)," in IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 6, pp. 3207-3216, June 2013. doi: https://doi.org/10.1109/TGRS.2012.2220369
- [3] Smith, A., Atkinson, N., Bell, W. and Doherty, A. (2015), An initial assessment of observations from the Suomi-NPP satellite: data from the Cross-track Infrared Sounder (CrIS). Atmos. Sci. Lett., 16: 260-266. doi: <u>https://doi.org/10.1002/asl2.551</u>
- [4] Weston, P. P., W. Bell, and J. R. Eyre, 2014: Accounting for correlated error in the assimilation of high-resolution sounder data. Quart. J. Roy. Meteor. Soc., 140, 2420–2429, doi: <u>https://doi.org/10.1002/gi.2306</u>.

# Questions ?

#### For more information please contact



www.metoffice.gov.uk



fabien.carminati@metoffice.gov.uk



+44 (0) 3301 350824

www.metoffice.gov.uk