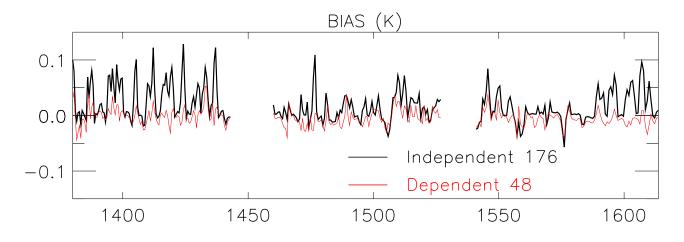


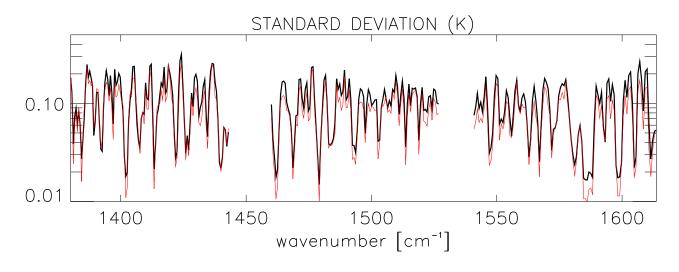
Development and validation of Gastropod a fast radiative transfer operator for the advanced infrared sounders

V. Sherlock[†], A. Collard^{*} and R. Saunders^{*}

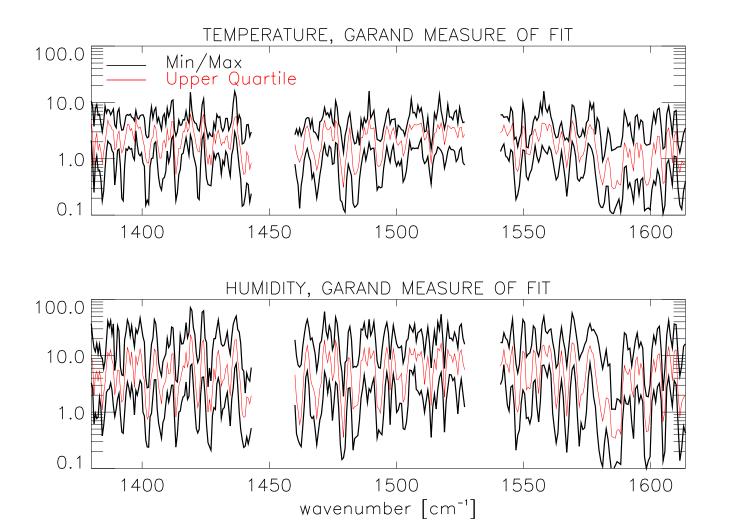
- † National Institute of Water and Atmospheric Research, NZ
- ★ Satellite Applications, NWP Division, The Met Office, UK

Thanks to Scott Hannon, Sergio De Souza Machado, UMBC, USA


GasTRoPOD model development strategy


- Prediction scheme: PFAAST [Hannon et al., 1996]
 - * separate water vapour line and continuum absorption
 - ★ weighted regression
- NEW in Gastropod!
 - * adjoint and K code
 - \star single H₂O line absorption regression scheme
 - * simple calculation of layer mean quantities (vertical res.)
 - ★ profile I/O on arbitrary pressure levels
- Convolved transmittance data: Scott Hannon, UMBC

Validation and intercomparison results


- Forward model errors (nadir view), 176 independent profiles ECMWF 50L diverse profile set [Chevallier, 1999]
 - Line-by-line radiative transfer kCARTA v1.10
 - RTTOV-7 error estimates [Matricardi et al., 2001]
- Jacobian error estimates (dependent profile set)
- Focus on the $H_2O \nu_2$ band

Line-by-line validation of the Gastropod forward model

Line-by-line model validation of Gastropod Jacobians

Summary and perspectives

• Gastropod: accurate radiative transfer robust error characteristics

μ	σ	GMoF
~ 0.0	< 0.1 K	< 10

- \star separation of H₂O line and continuum absorption
- Water vapour line absorption modelling study
 - ★ identification of lead predictors for line absorption
 - * collinearity: identification of an optimal subset of predictors
 - \rightarrow an improved description of H_2O line absorption