Cirrus mean effective ice crystal sizes from Satellite TIROS-N Operational Vertical Sounder (TOVS) **Observations**

Claudia Stubenrauch G. Rädel, R. Holz, N. A. Scott Laboratoire de Météorologie Dynamique, Ecole Polytechnique, France D. L. Mitchell

Desert Research Institute, Reno, USA

Longterm Satellite Observations

TOVS vertical sounders on polar satellites: since 1979 Path-B (Scott et al., BAMS 1999, **1987-1995**) \diamond every 6 hours, 20 km resolution, averaged over 1° ♦ good spectral resolution (HIRS:19 IR,1VIS, MSU: 4 µw) **3I Inversion** (Chédin, Scott 1985) temperature, water vapor profiles + cloud properties based on: radiosonde measurements radiative transfer $R_{clr}, R_{cld}(\lambda_i, p_k, \theta)$ TOVS Initial Guess Retrieval dataset **3I Cloud detection**

3I Cloud property retrieval

• over averaged cloudy pixels

 $= 4 \text{ channels in } 14\mu\text{m CO}_2\text{-band} + 11\mu\text{m} \\ \text{max weights:} 400-900 \text{ hPa} \qquad surface$

 $\frac{\text{coherence of effective cloud amount}}{N\varepsilon(p_{cld}) \cong N\varepsilon(p_k, \lambda_i) = \frac{R_m(\lambda_i) - R_{clr}(\lambda_i)}{R_{cld}(p_k, \lambda_i) - R_{clr}(\lambda_i)} \quad \text{for i=4,8}$ $\frac{\text{minimize weighted } \chi_w^2(p_k) => N\varepsilon, p_{cld}$ $\text{empirical weights <=> T profile uncertainty on } R_{cld} - R_{clr}$ (Stubenrauch et al., J. Climate 1999)

reliable cirrus clouds

TOVS Path-B high cloud frequency

Pcld < 440 hPa, 1987-1991

Study of high cloud amount evolution: *correlation with cosmic rays, volcanic eruptions?*

Workshop on Ion-Aerosol-Cloud Interactions

♦ Satellite observations: unique possibility to survey cld properties over long period **ISCCP TOVS 1983-1995:** <CA>~67% <eff. CA>~53% stable within 2% over globe Svensmark's 'cosmic ray intensity - CA correlation' analysis could not be confirmed! **1991 Pinatubo eruption** *aerosols* -> slight overestimation of ISCCP τ => slight underestimation of ISCCP high CA (4.5% in tropics)TOVS high eff. CA stable (IR)

TOVS cirrus ice crystal size retrieval

 based on spectral difference of cirrus emissivities
 ice crystal single scattering properties Q_{abs}, ω₀, g aggregates: hexagonal columns: modified ADA (*Mitchell 1996*) FDTD (*Fu 1998*)

radiative transfer based on discrete ordinate method (Streamer, J. Key)

Simulation of look-up tables

♦ ADA:
$$Q_{abs} = 1 - \exp\left(\frac{-4\pi n_i D_e}{\lambda}\right), \omega_0$$
 g from FDTD
♦ $D_e = 2r_e^{VP} = 2\frac{\int \frac{3V}{4\pi}n(r)dr}{\int \frac{P}{\pi}n(r)dr} = \frac{3}{2}\frac{IWC}{\rho_i P}$

- Bimodal- Γ size distribution N(D)=N_{0s}e^{- λ D} + N_{0l}D^ve^{- λ D}
- ♦ $D_e(\varepsilon_{11\mu m}, \varepsilon_{8\mu m})$, for 8 surfaces and 4 θ_v 's *SARB surface emissivities*
- for $0 < \epsilon_{11\mu m} \epsilon_{8\mu m} < 0.01 -> D_e(\epsilon_i) = D_e(\epsilon_{i-1}) + 2.5\mu m$

Sensitivity study on ice crystal size retrieval

Homogeneous cloud, $z_{cld} = 10$ km, z = 1 km, $T_{surf} = 300$ K, polycrystals, bimodal- Γ size distribution

		15μm D _e 60μm
crystal	spheres	+ 15% +30%
shape	hexagonal columns	+ 15% - 10%
size distribution	tropical	- 20% - 28%
	midlatitude	+ 5% - 20%

clouds

		15µm	D _e 60µm	15µm	D _e 60µm
Z _{cld}	> 4km	- 4%	- 2%	- 6%	- 2%
T _{surf}	< 15 K	+ 3%	+ 2%	+ 5%	+ 2%
Δz	> 1 km	+ 4%	+ 6%	+ 8%	+ 10%
horizontal heterogeneity	90% cloud cover	+ 7%	+ 2%	+ 27%	+12%
vertical	IWC(2) = 1.5 IWC(1)	+ 0.5%	o + 1.0%	+1.2%	+ 0.7%
heterogeneity	$D_{e}(2) = 2 D_{e}(1)$	-15%	- 20%	-15%	- 20%
+ water cloud	r _e =10µm, LWC=0.03g/m ³	+ 10%	+ 15%	+ 9%	+ 9%
	$r_e = 7 \mu m$, LWC=0.20g/m ³	+ 25%	+ 25%	+ 15%	+ 15%

TOVS cirrus ice crystal size retrieval

(Stubenrauch et al., JGR 1999, CIRAMOSA)

 $1^{\circ}x1^{\circ}$ overcast 3I high clouds (p_{cld} <440 hPa)

 $T_B^{meas}(8\mu m)$, $T_B^{meas}(11\mu m)$, T_{cld} , T_{surf} closest TIGR atmosph. H₂0/T profile, SARB surf. emissivities

3R radiative transfer

cirrus effective emissivities

$$\mathcal{E}\left(\lambda, \theta_{v}\right) = \frac{B\left(T_{B}^{m}(\lambda, \theta_{v})\right) - B\left(T_{surf}(\lambda, \theta_{v})\right)}{B\left(T_{cld}(\lambda, \theta_{v})\right) - B\left(T_{surf}(\lambda, \theta_{v})\right)}$$

 $\epsilon(11\mu m)-\epsilon(8\mu m) < ->$ simulated look-up tables

TOVS cirrus ice crystal size retrieval

- ◆ NOAA10 satellite observations: 1/1987 9/1991 (NOAA12: 8 µm channel problem at low temperatures!)
- $0.3 < \varepsilon(11\mu m) < 0.85$, sensitivity: $D_{e} \le 90\mu m$ $0.7 < \tau_{VIS} < 3.2$

- $\bullet \theta_v < 25^\circ$
- \diamond D_e uncertainties increase with D_e :
- calculate median values of distributions

D_e as function of latitude

Conclusions and Outlook

- Retrieval of Cirrus mean effective ice crystal size feasable at a global scale using TOVS Path-B satellite data
 - aggregate assumption: D_e between 35 and 65 µm $D_e(tropics) > D_e(midlatitude),$ $D_e(summer) > D_e(winter)$ $D_e=f(H_2O,\epsilon, dynamics)$
- hex. column assumption: D_e about 8 to 11 μm smaller
- recent NOAA satellites: no 8 μ m channel -> 4 μ m channel
- study other theoretical approaches (Yang, Mishchenko, Baran)
- check coherence with combined LW/SW fluxes (ScaRaB)

CIrrus microphysical properties and their effect on RAdiation: CIRAMOS **CIRAMOSA** FÜR M 200 Kickoff: 9/2/2001 Met Office

survey and integration into climate MOdels using combined SAtellite observations

Coordinator: Claudia Stubenrauch (C.N.R.S.-LMD) Web-site: http://www.lmd.polytechnique.fr/CIRAMOSA/Welcome.html

CIRAMOSA Objectives

- long-term survey of cirrus physical and microphysical properties (1987-1995)
- correlations between cirrus properties and the state of the atmosphere
- study their effect on the reflection and absorption of solar and thermal radiation
- improvement of cirrus radiative transfer in GCMs

