

National Polar-orbiting Operational Environmental Satellite System (NPOESS)

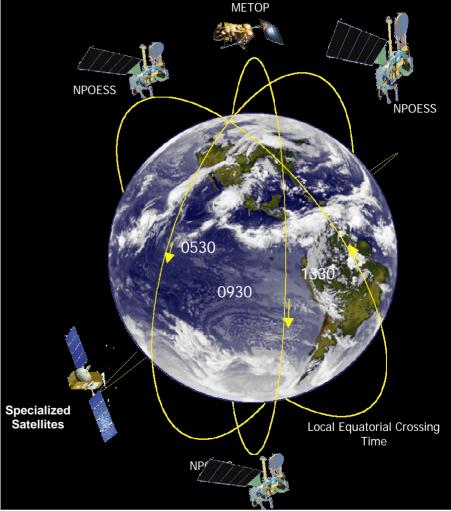
An Introduction to NPOESS presented at

ITSC 13 Sainte Adele, Canada

Hal J. Bloom Integrated Program Office Space Segment Manager

October 31st 2003

A Tri-agency Effort to Leverage and Combine Environmental Activities


Mission

Provide a national, operational, polarorbiting remote-sensing capability

Achieve National Performance Review (NPR) savings by converging DoD and NOAA satellite programs

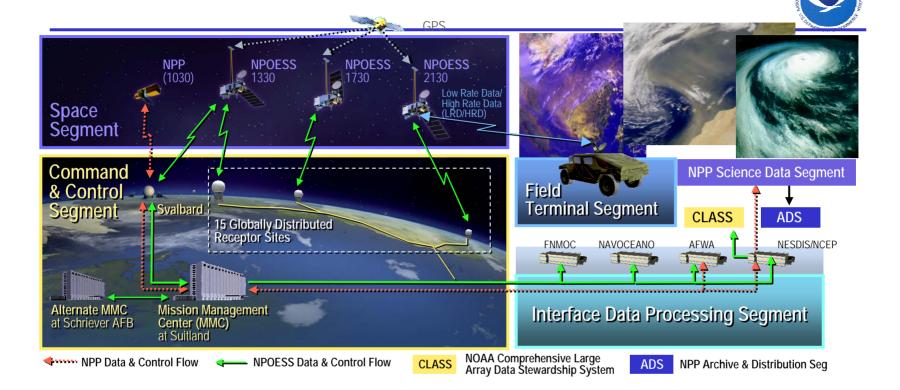
Incorporate new technologies from NASA

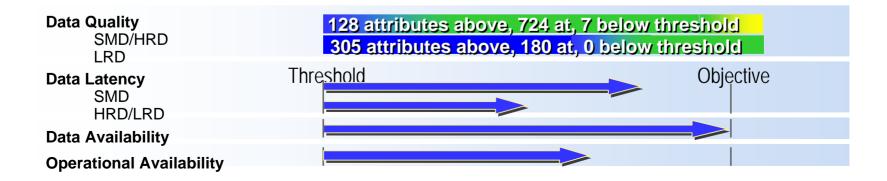
Encourage International Cooperation

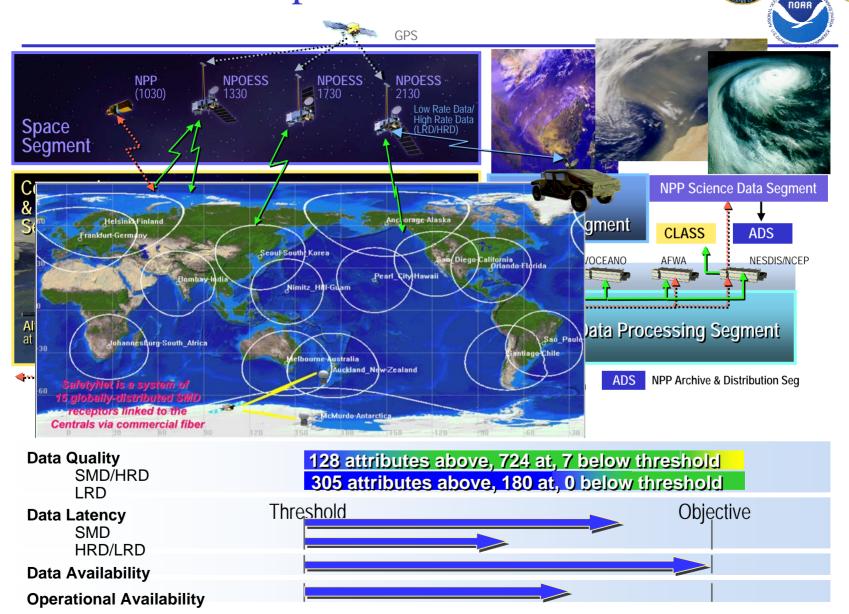
Saves as much as \$1.3B from the cost of previously planned separate developments

NPOESS EDR-to-Sensor Mapping 55 Product Sets [RDR, SDR, EDR]

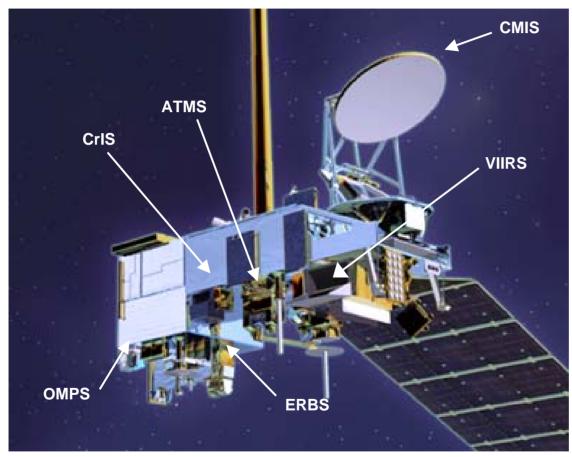
Atmospheric Vertical Moisture Profile	Cloud Top Pressure	Precipitable Water
Atmospheric Vertical Temp Profile	Cloud Top Temperature	Precipitation Type/Rate
X Imagery	Downward Longwave Radiance (Sfc)	Pressure (Surface/Profile)
Sea Surface Temperature	Downward Shortwave Radiance(sfc)	Sea Ice Characterization
Sea Surface Winds	Electric Field	Sea Surface Height/Topography
Soil Moisture	Electron Density Profile	Snow Cover/Depth
Aerosol Optical Thickness	Energetic Ions	Solar Irradiance
Aerosol Particle Size	Geomagnetic Field	Supra-Thermal-Auroral Particles
Aerosol Refractive Index	Ice Surface Temperature	Surface Type
Albedo (Surface)	In-situ Plasma Fluctuations	Wind Stress
Auroral Boundary	In-situ Plasma Temperature	Suspended Matter
Auroral Energy Deposition	Ionospheric Scintillation	Total Water Content
Auroral Imagery	Medium Energy Charged Particles	Vegetation Index
Cloud Base Height	Land Surface Temperature	VIIRS (23)
Cloud Cover/Layers	Net Heat Flux	CMIS (19)
Cloud Effective Particle Size	Net Solar Radiation (TOA)	CrIS/ATMS (3)
Cloud Ice Water Path	Neutral Density Profile	$\begin{array}{ c c } \hline OMPS(1) \\ \hline SFS(12) \\ \hline \end{array}$
Cloud Liquid Water	Color/Chlorophyll	SES (13) GPSOS (2)
Cloud Optical Thickness	Ocean Wave Characteristics	$= \frac{\text{Grbob}(2)}{\text{ERBS}(5)}$
Cloud Particle Size/Distribution	Outgoing Longwave Radiation (TOA)	TSIS (1)
Cloud Top Height	Ozone - Total Column/Profile	ALTIMETER (3) APS (4)


, ★ Environmental Data Records (EDRs) with Key Performance Parameters


NPOESS Overview

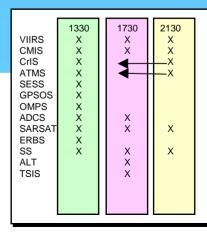

- Contract was awarded on August 23, 2002 to Northrop Grumman Space Technology
- Contract consists of:
 - 6 satellites
 - Taking over all government instrument contracts
 - Buying all "leveraged" instruments
 - Integrating GFE instruments (ADCS and SARSAT)
 - Building and deploying all ground systems
 - C3 and data retrieval
 - Data processing hardware and software
 - Software for worldwide users
 - Operating system through IOC (2011)
 - with option to 2018

NPOESS Top Level Architecture



NPOESS Top Level Architecture

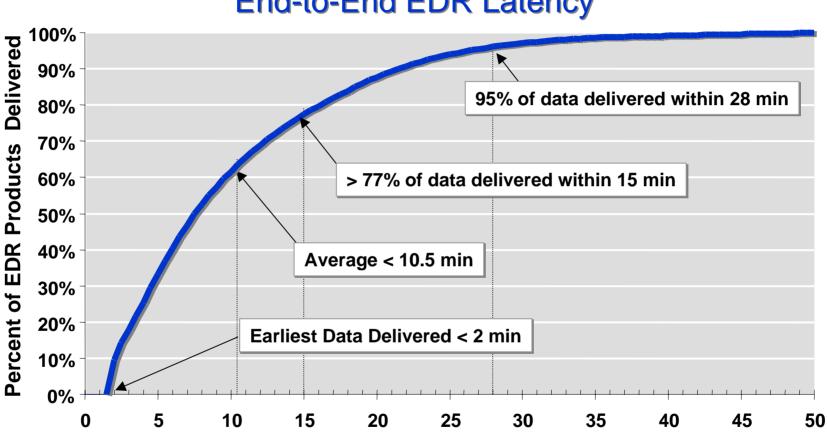
NPOESS Satellite



NPOESS 1330 Configuration

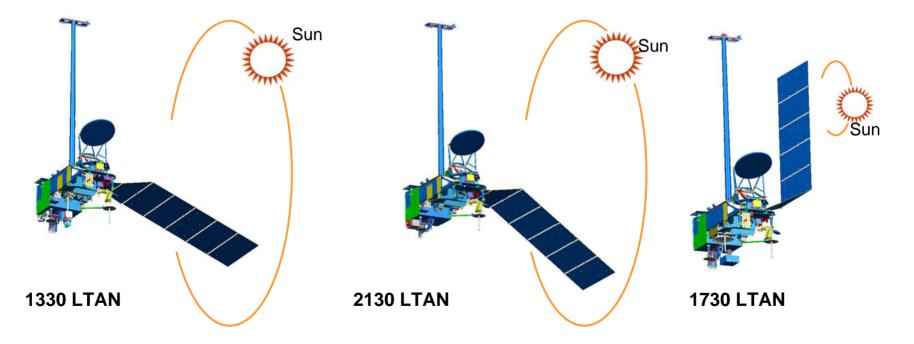
Single satellite design with common sensor locations

VIIRS - vis/IR imager - µwave imager CMIS CrIS - IR sounder ATMS - µwave sounder SESS - space environment **GPSOS - GPS occultation OMPS** - ozone ADCS - data collection SARSAT - search & rescue APS - aerosol polarimeter ERBS - Earth radiation budget SS - laser sensor ALT - altimeter TSIS - solar irradiance

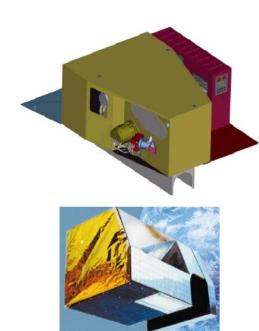

NPOESS Payloads

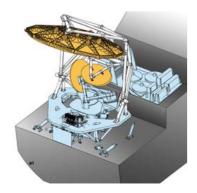
NPOESS Instruments	0520	0020	1220	METOP 0930	NPP
IPO Developed	0530	0930	1550	0930	1030
		x	x	X (AVHRR)	x
Visible/IR Imager Radiometer Suite (VIIRS)*	X				
Cross-track IR Sounder (CrIS)*		– ×	X	X (IASI/HIRS)	Х
Conical MW Imager/Sounder (CMIS)*	Х	X	X		
Ozone Mapper/Profiler Suite (OMPS)			X	X (GOME)	Х
GPS Occultation Sensor (GPSOS)			X	X (GRAS)	
Space Environmental Sensor Suite (SESS)			X	X (SEM)	
Aerosol Polarimetry Sensor (APS)		X			
Leveraged					
Advanced Technology MW Sounder (ATMS)*	-	- x	X	X (AMSU/MHS)	Х
ARGOS-Data Collection System (A-DCS)			X	x	
Search and Rescue (SARSAT)		X	X		
Earth Radiation Budget Sensor (ERBS)			X		
Total Solar Irradiance Sensor (TSIS)	Х				
Radar altimeter (ALT)	Х				
Survivability Sensor (SS)		x	x		
Advanced Scatterometer (ASCAT)				X	

NPOESS EDR Processing Timeline


End-to-End EDR Latency

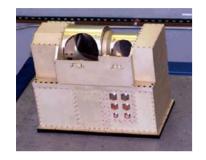
Time from Observation to Delivery (minutes)

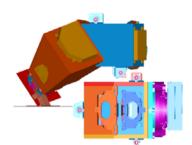

Single Satellite Solution

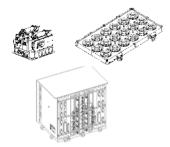


- Common spacecraft design for all three planes
- Common sensors in the same place for efficient integration and re-configuration

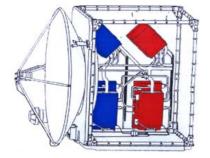
Development Sensor Highlights






- Visible/Infrared Imager Radiometer Suite (VIIRS) Raytheon Santa Barbara Research Center
 - 0.4 km imaging and 0.8 km radiometer resolution
 - 22 spectral bands covering 0.4 to 12.5 μm
 - Automatic dual VNIR and triple DNB gains
 - Spectrally and radiometrically calibrated
 - EDR-dependent swath widths of 1700, 2000, and 3000 km
- Cross-track Infrared Sounder (CrIS) ITT Fort Wayne
 - 158 SWIR (3.92 to 4.64 $\mu m)$ channels
 - 432 MWIR (5.71 to 8.26 $\mu m)$ channels
 - 711 LWIR (9.14 to 15.38 $\mu m)$ channels
 - 3x3 detector array with 15 km ground center-to-center
 - 2200 km swath width
- Conical Scanning Microwave Imager/Sounder (CMIS) Boeing Space Systems
 - 2.2 m antenna
 - RF imaging at 6, 10, 18, 36, 90, and 166 GHz
 - Profiling at 23, 50 to 60, 183 GHz
 - Polarimetry at 10, 18, 36 GHz
 - 1700 km swath width

Development Sensor Highlights (cont.)

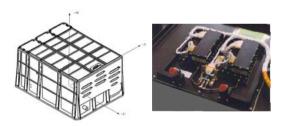


- Advanced Technology Microwave Sounder (ATMS) Northrop Grumman Electronics
 - CrIS companion cross track scan
 - Profiling at 23, 50 to 57, 183 GHz
 - Surface measurements at 31.4, 88, 165 GHz
 - 1.1, 3.3, and 5.2 deg (SDRs resampled)
 - 2300 km swath width
- Ozone Mapping and Profiler Suite (OMPS) Ball Aerospace
 - Total ozone column 300 to 380 nm with 1.0 nm resolution
 - Nadir ozone profile 250 to 310 nm with 1.0 nm resolution
 - Limb ozone profile 290 to 1000 nm with 2.4 to 54 nm resolution
 - Swath width of 2800 km for total column
- Global Positioning System Occultation Sensor (GPSOS)
 Saab Ericson
 - RF receiver/processor of GPS signals at 1575.42 and 1227.60 MHz
 - Velocity, anti-velocity and nadir views
 - Ionospheric scintillation
 - Tropospheric/stratospheric sounding

Leverage Sensor Highlights

• Radar Altimeter (ALT) Alcotel

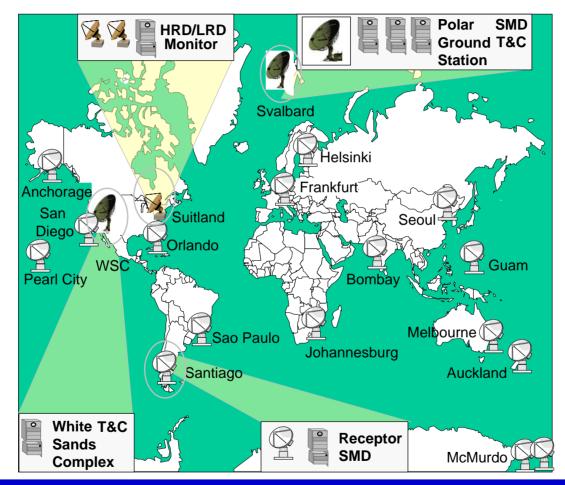
- Measures range to ocean surface with a radar at 13.5 GHz
- Corrects for ionosphere with 5.3 GHz radar
- Corrects for atmosphere with CMIS water vapor measurements
- Precise orbit determination with GPS


• Earth's Radiation Budget Suite (ERBS) Northrop Grumman Space Technology

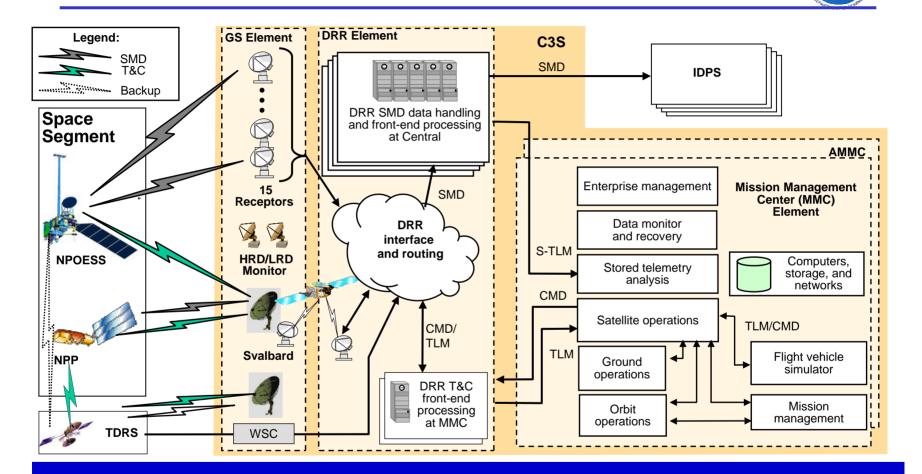
- Three spectral channels
- Total radiation measurement 0.3 to $50 \ \mu m$
- Shortwave Vis and IR measurement 0.3 to 5 μ m
- Longwave IR measurement 8 to 12 μm
- Total Solar Irradiance Sensor (TSIS) University of Colorado
 - Two sensors for total irradiance (TIM) and spectral irradiance (SIM)
 - TIM measures total solar irradiance
 - SIM measures spectral irradiance 200 to 2000 nm
 - Pointing platform and sensor suite to be provided by CU LASP

Highlights of Other Sensors

- Space Environment Sensor Suite (SESS) Ball Aerospace
 - Sensor suite collecting data on particles, fields, aurora, and ionosphere
 - Suite includes a UV disk imager (BATC), EUV limb imager (BATC), charged particle detectors (Amptek/U. of Chicago), thermal plasma sensors (UTD), a magnetometer (MEDA), and a coherent beacon sensor (AIL)
- Advanced Data Collection System (ADCS) and Search and Rescue Satellite-Aided Tracking (SARSAT)
 - "GFE" to NPOESS from France and Canada
 - ADCS supports global environmental applications
 - SARSAT collects distress beacon signals
- Aerosol Polarimetry Sensor (APS) Raytheon Santa Barbara Research Center
 - Aerosol characterizations of size, single scattering albedo, aerosol refractive index, aerosol phase function
 - Multispectral (broad, 0.4 to 2.25 μ m)
 - Multiangular (175 angles)
 - Polarization (all states)


Pre-Planned Product Improvement (P3I) EDR Candidates

Tropospheric winds Neutral winds All weather day/night imagery **Coastal sea surface winds** Ocean wave characteristics Surf conditions **Oil spill location** Littoral current CH4 column CO column CO₂ column **Optical background** Sea and lake ice Coastal ocean color **Bioluminescence potential Coastal sea surface temperature** Sea surface height coastal **Bathymetry** Vertical hydrometeor profile Salinity


C3S Ground Station Element

SMD Receptors and T&C Ground Stations provide automated, schedule-driven connectivity to the Space Segment

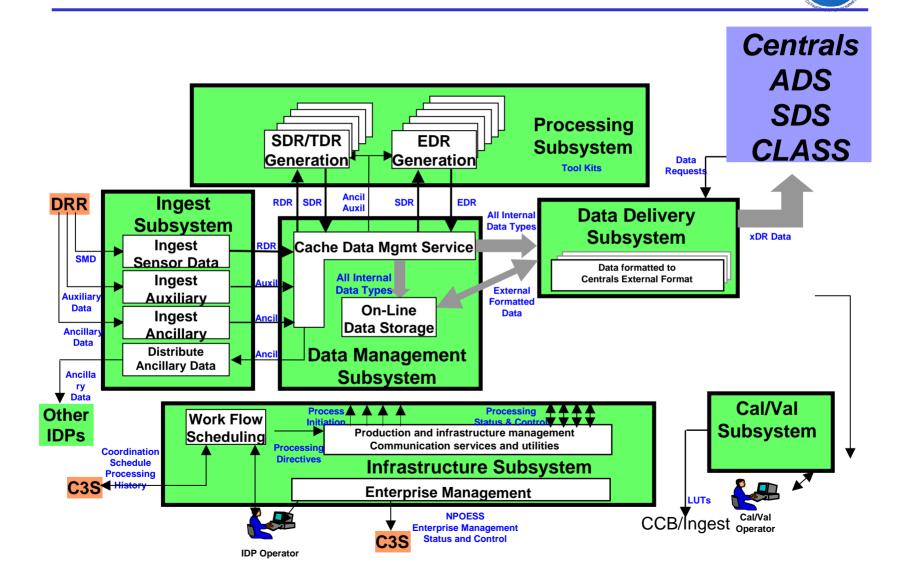
C3S Segment Design

SafetyNet C3S provides low-cost, reliable, and timely data delivery with the flexibility needed for low-cost system growth and technology insertion

IDPS Segment Approach

• High performance computing hardware

- Each Central has a complete system (IDP) that will generate all products within required latencies
- Each IDPS or Central contains an Operations string, an Integration and Test (I&T) string, and shared disk arrays (RAID)
- Operations string carries 100% reserve capacity and additional availability processors
- I&T string can be used for integration and test of new software, support for technology insertion, parallel operations, failover, and algorithm development


• Modular, workflow managed software

- Receives multiple data streams from C3S, processes data into RDRs, SDRs, TDRs, and EDRs, packages products into form useful for Centrals, and delivers requested products to end users
- Centrals have control over what products are created, which ancillary data sets are used, and how products are delivered

• Same software is used in field terminals

- Will be made available worldwide via download from the internet

IDPS Functional Diagram

19

NDAP

Risk Reduction

Proteus

11/5/

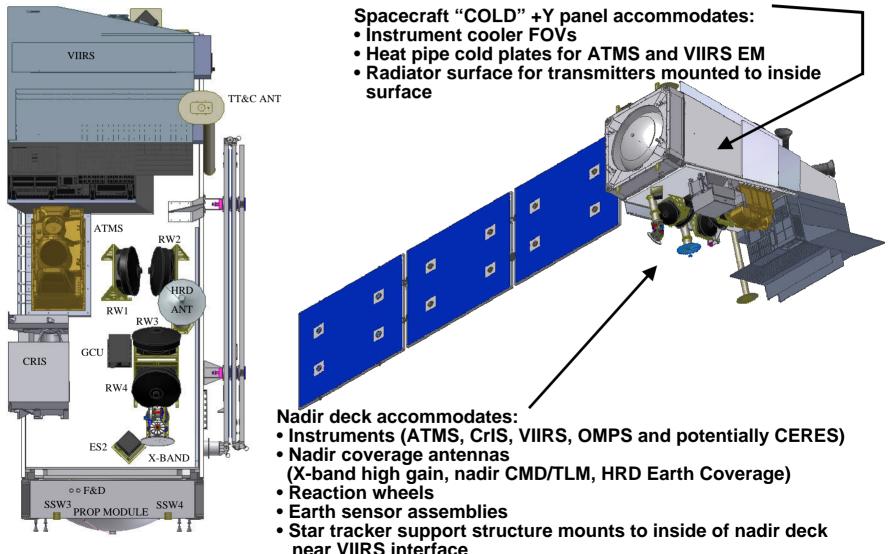
SOLSE



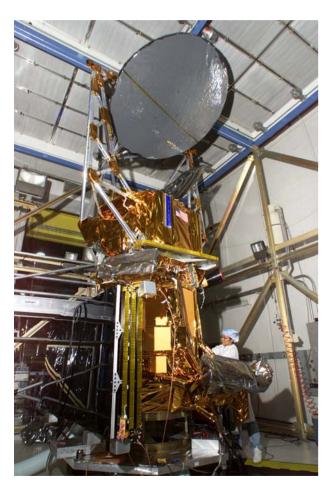
- Validate technological approach to remote sensing
- Early delivery of NPOESS data to users
- Sensor demonstrations on non-operational platforms
 - Lower risk to operational users
 - Lower risk of launch delays due to operational schedule

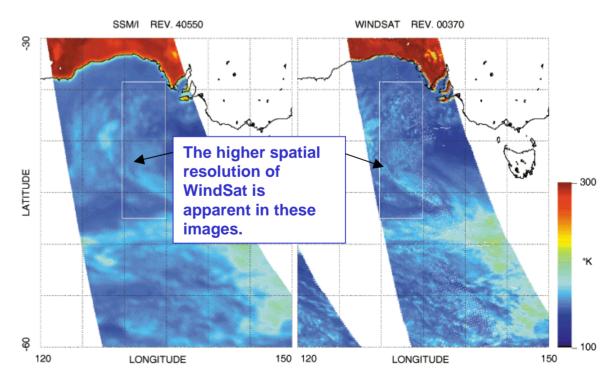
NASA ER2 / NAST

DIDM

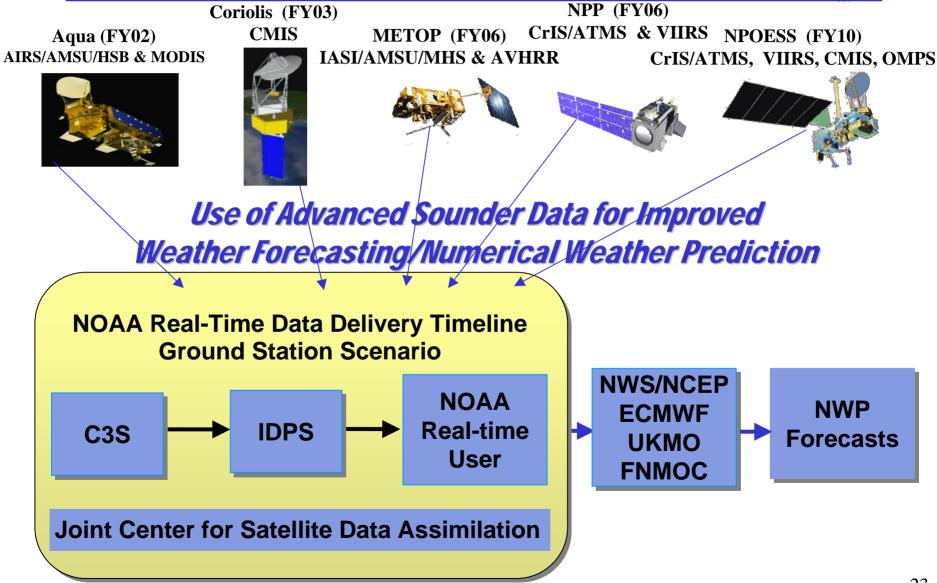

• Share cost & risk among agencies

NPP


NPP Instruments Accommodation

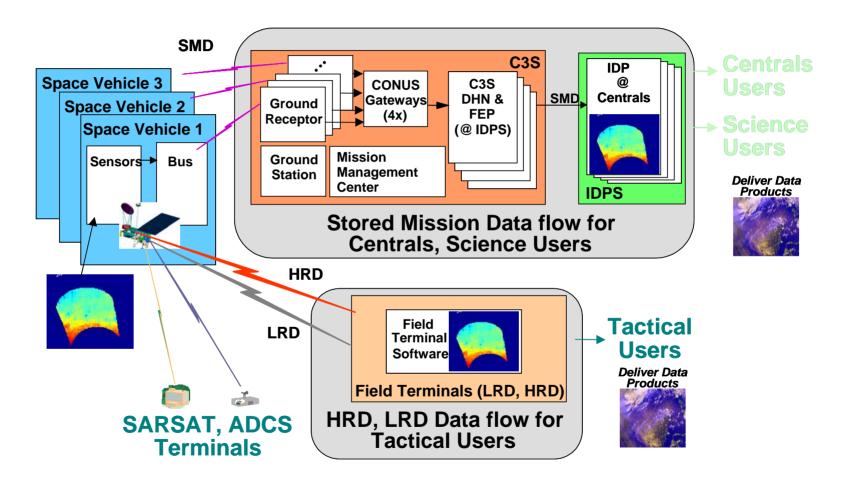


WindSat / Coriolis NPOESS CMIS Risk Reduction


WindSat TDR to SSM/I Brightness Temperature 37 GHz Horizontal Polarization

SSM/I 37H & WINDSAT 37.0H TDR COMPARISONS

Real-Time Operational Demonstrations



Field Terminals are an integral part of NPOESS

What is NPOESS planning?

- NPOESS responsible for building software and terminal specifications, but not for building terminals
 - NPOESS will publish specifications and design trade information for users
 - NPOESS will make certified software available on the program website for download by anyone desiring to use it
- NPOESS will deliver data to users world-wide in accordance with US national data policy
 - Data will be downlinked openly around the world at no cost to receivers
 - Capability for data encryption/data denial exists for national defense needs
 - Denial can be done on a world-wide or geographic basis
- NPOESS calls the world-wide users "field terminals" (to differentiate from the Weather Centrals)

Field Terminal Procurement Specification

Link Parameters

<u>Parameter</u> Carrier Frequency	<u>NPOESS HRD</u> 7812 MHz or 7830 MHz command selectable	z NPOESS LRD 1706 MHz
Max Occupied Bandwidth	30.8 MHz	8.0 MHz
Channel Data Rate*	40 Mbps	7.76 Mbps
Ground Aperture Size	≤ 2.0 meters	1.0 meters
Minimum Elevation Angle	5.0 degrees	5.0 degrees
Data Quality SMD/HRD LRD		, 724 at, 7 below threshold , 180 at, 0 below threshold
Data Latency SMD HRD/LRD	Threshold	Objective

* Includes all CCSDS overhead, Reed-Solomon forward error correction, and convolutional encoding

LRD Environmental Data Records (28 EDRs)

			Tree contractions and the second s	
* *	Atmospheric Vert Moisture Profile	Cloud Top Pressure	Precipitable Water	\mathbf{x}
* *	Atmospheric Vert Temp Profile	Cloud Top Temperature	Precipitation Type/Rate	☆
\mathbf{x}	Imagery	Downward Longwave Radiance (Sfc)	Pressure (Surface/Profile)	★
***	Sea Surface Temperature	Downward Shortwave Radiance(Sfc)	Sea Ice Characterization	
* *	Sea Surface Winds	Electric Field	Sea Surface Height/Topography	
\mathbf{x}	Soil Moisture	Electron Density Profile	Snow Cover/Depth	☆
\bigstar	Aerosol Optical Thickness	Energetic lons	Solar Irradiance	
	Aerosol Particle Size	Geomagnetic Field	Supra-Thermal-Auroral Particles	5
	Aerosol Refractive Index	Ice Surface Temperature	Surface Type	
\bigstar	Albedo (Surface)	In-situ Plasma Fluctuations	Surface Wind Stress	
	Auroral Boundary	In- <i>situ</i> Plasma Temperature	Suspended Matter	☆
	Auroral Energy Deposition	Ionospheric Scintillation	Total Water Content	☆
	Auroral Imagery	Medium Energy Charged Particles	Vegetation Index	
	Cloud Base Height	Land Surface Temperature	VIIRS 23	-
★	Cloud Cover/Layers	Net Heat Flux	CMIS 19	
\bigstar	Cloud Effective Particle Size	Net Solar Radiation (TOA)	CrIS/ATMS 3	
	Cloud Ice Water Path	Neutral Density Profile		
\mathbf{x}	Cloud Liquid Water	Ocean Color/Chlorophyll	SES 13 GPSOS 2	
$\frac{1}{2}$	Cloud Optical Thickness	Cocean Wave Characteristics	ERBS 5	
	Cloud Particle Size/Distribution	Outgoing Longwave Radiation (TOA)		
$\frac{1}{2}$	Cloud Top Height	Ozone - Total Column/Profile	ALT 3 APS 4	
			AF3 4	

★ EDRs with Key Performance Parameters

★ High Priority EDRs 🔰 🛧 Lower Priority EDRs

Integrated Program Office

Web sites

NPOESS Websites

- -http://www.npoess.noaa.gov
- -http://npoesslib.ipo.noaa.gov/
 (electronic bulletin board)