Further development of the ATOVS and AVHRR Processing Package (AAPP)

including an initial assessment of EARS radiances

Nigel Atkinson and Keith Whyte (Met Office, UK)

Contents

- Status of AAPP version 4
- Developments for NOAA-N,N' (version 5) and METOP
- Use of data from EUMETSAT ATOVS Retransmission Service (EARS)

AAPP Version 4 changes

1) Improved documentation

- Scientific description (pdf)
- Software description (pdf)
- Data formats document (pdf)
- AAPP Overview (pdf)
- Installation guide (html)
- 2) Fortran 90 compatible
 - Compiles under selected F90 and F77 compilers, with no significant differences in output
- 3) Moon in AMSU-A space view
 - Detects and corrects moon contamination in AMSU-A space view (at 1b -> 1c stage)
 - Method used at Met Office for some time
 - Interpolate gain
 - Different from method to be implemented by NESDIS at 1b level (correction based on antenna patterns), but no conflict

AAPP Version 4 changes (cont.)

4) Antenna efficiencies

 atovin/infdf.F modified to allow different antenna efficiencies for different satellites

5) 'Bug' in surfelev.F

Old code gave different answers for f77 & f90 compilers

Status:

- Valuable comments received from beta-testers at KNMI and Wisconsin
- Version 4 being distributed by EUMETSAT October 2003

Developments for NOAA-N, N'

NOAA-N launch expected summer 2004

Changes will be incorporated into AAPP version 5, to be released following NOAA-N launch

- Main differences from NOAA-KLM:
 - MHS instead of AMSU-B
 - HIRS/4 instead of HIRS/3
- Progress so far:
 - Code changes for MHS complete; being tested using NOAA-N thermal vacuum data

MHS

Main differences between MHS and AMSU-B:

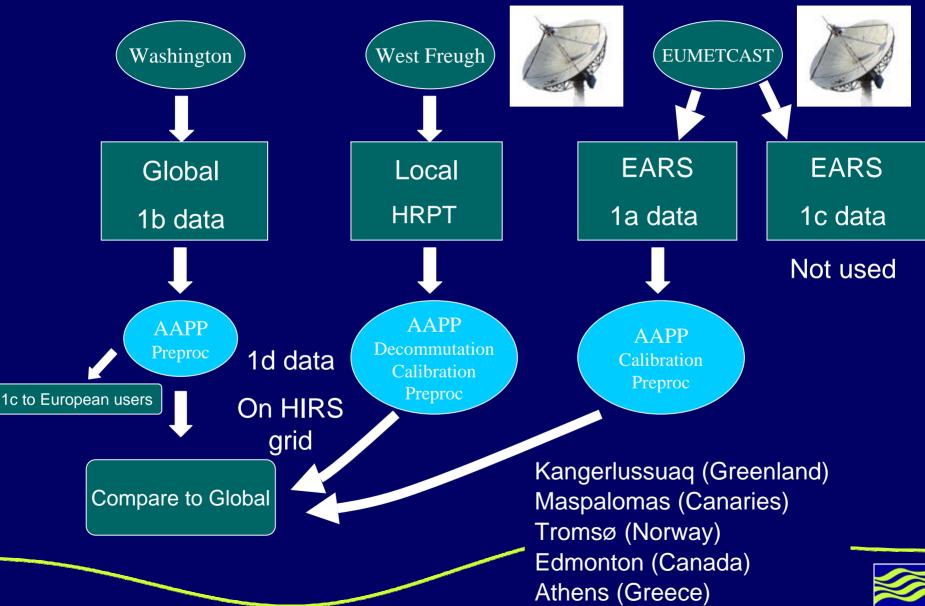
- Channel 20: 190.31 GHz instead of 183.31±7
- Channel 17: 157 GHz instead of 150
- Channels 18 & 19: H polarization at nadir instead of V
- Spare local oscillators (LO-A, LO-B), characterized separately
- Spare processing electronics (PIE-A / PIE-B)
- Method of computing on-board target temperature (using 3 precision resistors)

In AAPP:

- Decode MHS data in HRPT data stream
 - MIU (MHS Interface Unit) on NOAA spacecraft outputs MHS data into HRPT words previously used for AMSU-B
- New 1b definition (mhs1b.h) and calibration program (mhsc1)
- Otherwise, differences can be accommodated within existing structure. No changes at level 1c or beyond (use amb1c.h).

Other changes for Version 5

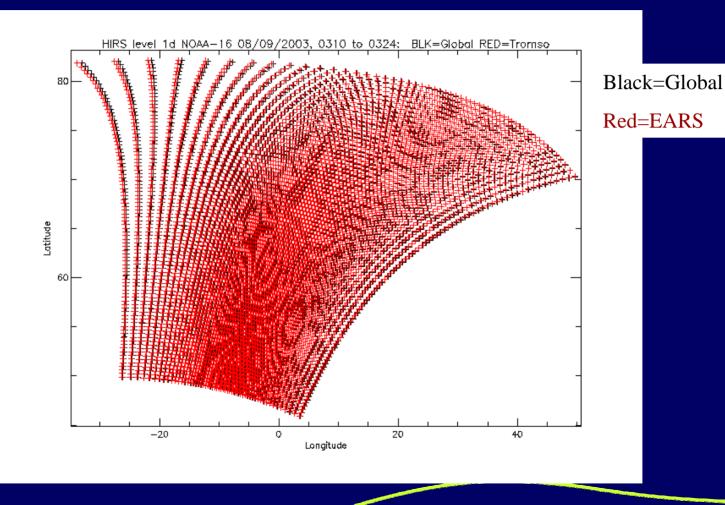
- Implement new HIRS calibration algorithm (v4.0) as an option
- Minor additions to AMSU-A 1b format (following NOAA recommendations)
- Improved navigation (2-line elements with SGP4)
- Moon detection in AMSU-B / MHS space view
 - Similar to that already implemented for AMSU-A, but at amsubcl/ mhscl stage
 - Reject space view samples too close to predicted position of moon (up to 3 of the 4 samples)
 - Same method will be used by NESDIS (performs better than current NESDIS method)



Developments for METOP direct broadcast

- NWP SAF working with EUMETSAT on development of AAPP for the METOP era
- Instruments supported: ATOVS + IASI
- EPS user terminals:
 - Supplied by EUMETSAT
 - Software (written by industry) to receive direct broadcast
 - Interface for AAPP will be EUMETSAT level 0 (i.e. the EUMETSAT equivalent of NOAA level 1a)
 - SPOT-5 orbital prediction model to be used
 - The 'Admin' message will contain information related to navigation, spacecraft manoeuvres, etc.
- IASI code being developed by CNES

EARS Data Acquisition and comparison



(also Bedford, Gander, Monterey)

Latitude

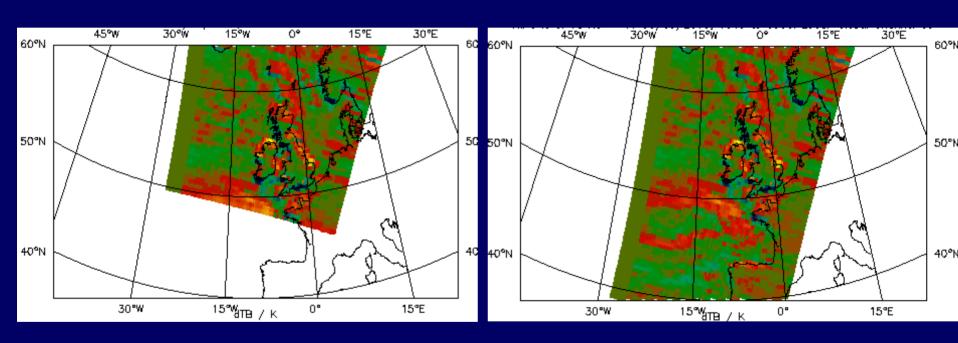
Mapping Compared to Global

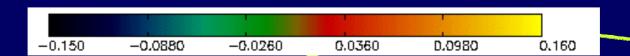
Tromsø Data

Longitude

Reasons for mapping differences

Orbit prediction

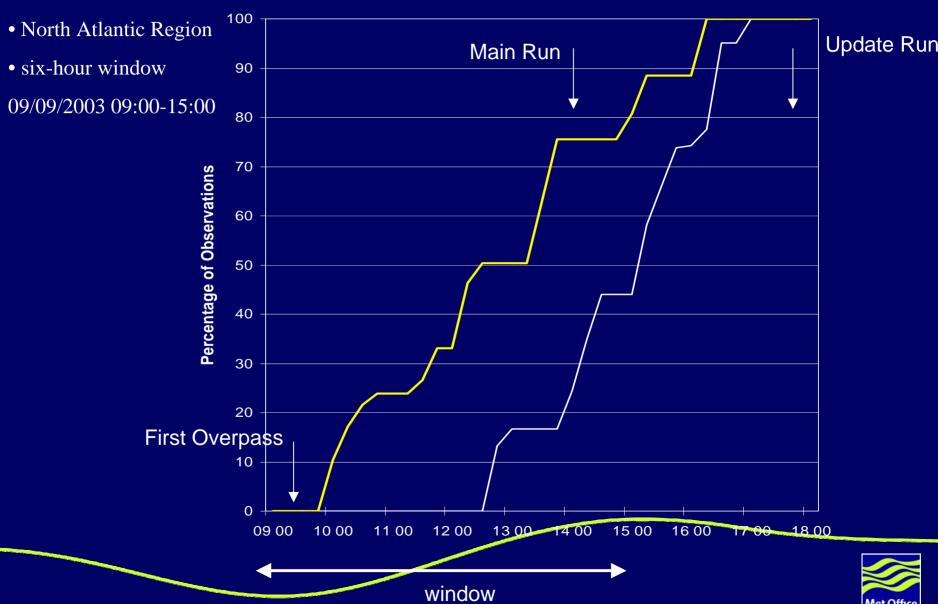

- Met Office: TBUS received daily via GTS
- EARS 1c: TBUS info from NOAA web site http://noaasis.noaa.gov/NOAASIS/ml/navigation.html
- NESDIS global: more sophisticated US military data
- Re-mapping to HIRS
 - NOAA-16 & NOAA-17 HIRS misaligned
 - NESDIS assume 1.8 deg for both
 - AAPP assumes 2.0° & 1.7° respectively, based on comparisons with AVHRR (hard-coded in include/timang.h)



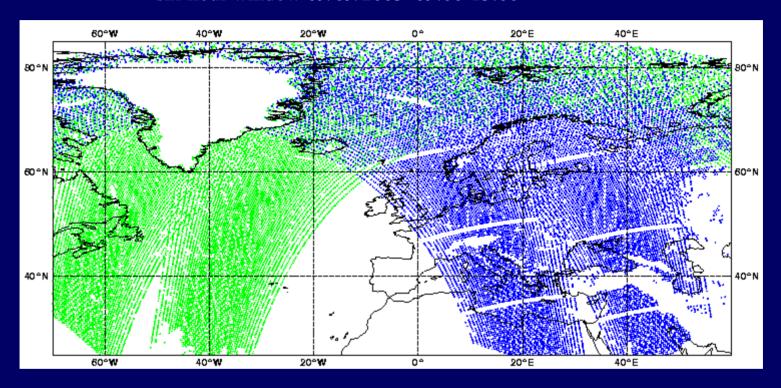
Brightness Temperature Comparison AMSU-15

Global -Tromsø

Global -Local


Reasons for brightness temperature differences

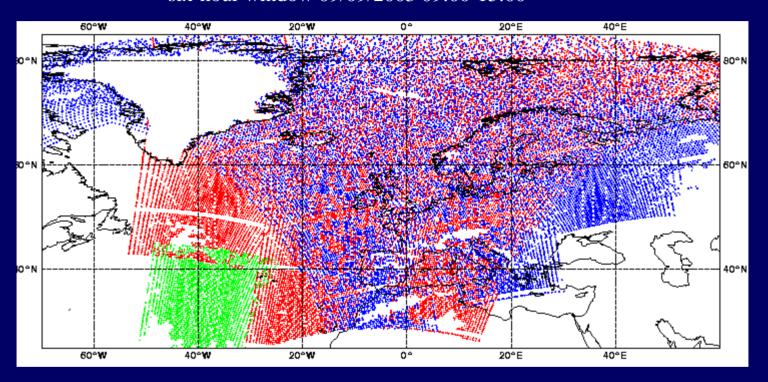
- Re-mapping to HIRS grid
 - AMSU brightness temperatures are consistent to 0.01K at level 1c
- HIRS calibration
 - Partial super-swaths at start and end of overpass
 - Combine EARS 1a datasets before calibrating?
 - New NOAA HIRS calibration method (v4.0) may help. Météo-France updating calibration algorithm for AAPP.


Arrival Times of Data

Global 109229 obs —— EARS 93979 Obs

Global AMSU Data Used in the Main Run

six-hour window 09/09/2003 09:00-15:00



Green: NOAA 15 Blue: NOAA 16 Red: NOAA 17

Available EARS AMSU Data

six-hour window 09/09/2003 09:00-15:00

Green: NOAA 15 Blue: NOAA 16 Red: NOAA 17

• Assimilation trials using EARS to commence in autumn 2003

Conclusions

- AAPP v4 released
- Work underway for NOAA-N and METOP
- EARS comparisons with NESDIS data performed routinely
- Monitoring in the operational system suggests good quality for assimilation & ability to fill in 'blind orbits'

Acknowledgements

- Tiphaine Labrot & Pascal Brunel (Météo-France)
- Rainer Schraidt (EUMETSAT)
- Brett Candy & Una O'Keeffe (Met Office)

