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Outline
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Introduction

• Modern hyperspectral sensors have thousands of channels
– AIRS : 2378
– IASI  : 8461
– CrIS : 1305
– NAST-I : 8632

• Provide high information content
– Improved sounding accuracy and vertical resolution

• Computationally expensive to performance RT calculations
– Often a subset of channels are used in variational retrievals
– Only a few hundred channels are used in satellite data assimilation

• Faster forward models are needed
– Model all the channels efficiently
– PCRTM models PC scores instead of channel radiances

• Not channel-based RT model---less computations
• Radiance can be obtained by EOF transformation
• A factor of 3-40 time faster than channel based RT models
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Overview of PCRTM

• PCRTM calculates PC scores instead of channel radiance
– PC scores can be thought of as super channels
– Contain all the essential information on a spectrum
– Reduces dimensionality (by 5-50)

• PCRTM provides derivatives of PC scores with respect to state vectors 
directly

– Retrieval can be done in EOF domain directly
• All RT are done monochromatically

– Can be extended to handle multiple scattering
• Channel radiances (or transmittances ) can be obtained by multiplying 

the PC scores with pre-stored Principal Components (PCs):

• Can model unapodized spectra efficiently
– The ILS information is captured by eigenvectors
– Channel transmittances or radiances are not modeled directly

• No need to handle negative side lobes etc…..
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Overview of PCRTM (continued)

• Yi is the projection coefficient (PC scores) for the ith EOF

Yi = UNch ×1
T RNch ×1

ch = U( j,i) × Rch ( j)
j=1

Nch

∑

• Y is a non-linear function of atmospheric state
– contains essential information about the spectrum 

• U captures spectral variations from channel to channel
– does not change from one spectrum to another

• Rch is a convolution of monochromatic radiances with ILS
– ILS does not change from one spectrum to another

• Y can be predicted from monochromatic radiances directly
– U and b (ILS) are constant with respect to each spectrum and are 

absorbed into constant, a

Yi = U( j,i) × bkR
mono(k)
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Projection Coefficients and Fitting Errors
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Forward Model Flowchart
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Radiative Transfer Calculation is Simple

• Radiative Transfer coding is very simple (see example for 
calculating upwelling radiances):
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PCRTM Applied to NAST-I Instrument
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LBLRTM/PCRTM Comparisons using 
profiles independent of training set



11

Comparison of NAST-I Observation with PCRTM
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Example of PCRTM Applied to AIRS Instrument
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Examples of PCRTM Jacobian for AIRS Instrument

Jacobians for AIRS Instrument
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Comparison of Observed AIRS Radiance and 
PCRTM Calculated Radiance

•Ozone truth is from ECMWF model which may not be accurate
•Spikes are due to instrument popping noise which have not been removed
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Location of Clear AIRS Observation
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Differences between AIRS Observed and PCRTM-
Calculated Spectra
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Summary and Future Work

• PCRTM has been implemented for AIRS, NAST-I and IASI 
instruments
– Comparisons with real AIRS and NAST-I radiance are good
– Significant improvement in speed with respect to channel-based fast RT 

models
• PCRTM is a suitable for variational retrievals

– 3-40 times faster than channel based RT models
– Deals with all ILS or SFR 
– Provides both PC-scores (Super Channels) and associated Jacobians
– Channel radiance and Jacobians can be generated if needed 
– Great potential in NWP data assimilation and cloudy sky retrievals

• Future work
– Train under more diverse conditions

• more variability in trace gases (CO, CH4, N2O, CO2)
• Pay more attention to Jacobians

– Include multiple scatterings
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