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Introduction 
 
The Optimal Spectral Sampling (OSS) method (e.g. Moncet et al., 2004) is a fast and accurate 
transmittance parameterization technique. The OSS method offers a simple and practical solution to 
the problem of extending the Exponential Sum Fitting of Transmittances (ESFT) (Wiscombe, 1977) 
and k-distribution techniques (e.g. Goody et al, 1989) to vertically inhomogeneous atmospheres with 
overlapping absorbing species. The multi-dimensional search for absorption coefficients (k’s) in a 
multi-layered atmosphere attempted by several authors (e.g. Armbruster and Fischer, 1996) is greatly 
simplified by operating in the one-dimensional frequency domain. In the OSS concept, the 
parameterization process reduces to searching for a set of wavenumbers (nodes) and associated 
weights such that spectrally integrated radiances are well approximated by a linear combination of 
monochromatic radiances computed at the selected nodes, 
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In the first phase of development, we have concentrated on trading and optimizing techniques for 
selecting the nodes and weights for a single channel, in non-scattering atmospheres (e.g. Moncet and 
Uymin, 2003). Microwave and infrared models produced in this first phase already offer significant 
speed and accuracy advantages over current operational radiative transfer (RT) models (Weng et al., 
2005). OSS models are currently used in the NPOESS/CrIS and CMIS EDR algorithms (Moncet et al., 
2004, 2001) and have been integrated in the Joint Center for Satellite Data Assimilation (JCSDA) 
Community RT Model (CRTM) model (Van Delst et al., 2005.), a joint NOAA/AER effort. These 
models are currently being considered for operational use in the National Center for Environmental 
Prediction (NCEP) assimilation process. In parallel, some research has focused on extending the 
current training to scattering atmospheres and on training models for high spectral resolution 
instruments by considering all the channels simultaneously (generalized training). Some key results of 
this research are presented below. 
 
 
OSS Validation in scattering atmospheres 
 
The OSS method is by construction amenable to the treatment of radiative transfer in scattering 
atmospheres. However, one has yet to devise an approach for performing the training in such 



conditions. Two aspects have to be considered separately. The first question is how one should train 
the OSS model for a single narrow channel, when cloud/aerosol optical properties do not vary 
spectrally within the channel, and the second issue relates to the handling of the spectral variations of 
cloud properties across a wide band channel (or, for generalized training – see section 4, across 
multiple channels). Only the first question is addressed in this section. Our effort has initially focused 
on the thermal regime. 
 

 

  
 

  

Fig. 1: OSS modeling errors for UMBC profile #1 (Nadir viewing) with low (top pressure = 
800mb) and high (top pressure = 150mb) clouds. The results shown in this figure correspond 
to cloud optical depths of 10 (left) and 100 (right) and single scatter albedos ranging from 0.9 
to 1. Clear-sky training was used.  
 
The effect of introducing scatterers is to increase the photons path lengths within the atmospheric 
layers below the cloud top. As long as cloud properties do not vary across the channel, there is a 
priori no need to use a scattering model in order to perform the training. Clear scenes constructed by 
using a wide enough range of path lengths within appropriately selected layers should be adequate.  



 
The first step has been to validate an OSS model trained with our current clear-sky training data set 
(without any perturbation in the layer air masses) over the full range of cloud/aerosol optical depths 
and single scatter albedos. The particular model used in this study was trained for 1 cm-1 boxcar 
functions with a nominal accuracy of 0.05 K. The reference calculations were produced using 
LBLRTM (Clough et al., 1992) combined with the CHARTS (Moncet and Clough, 1997) adding-
doubling RT model. Figure 1 shows examples of errors obtained with low and high single layer 
clouds. It is apparent from this figure that the current model behaves very well in the thermal regime. 
For single scatter albedos up to 0.95, the cloudy performance is similar to the clear-sky performance 
and radiance errors are within the tolerance of the model. There is a sudden increase in the error when 
the cloud single scatter albedos approaches 1, which becomes apparent only at high optical depths (50 
or greater). Even in this case, the error relative to line-by-line calculations is within ~0.2K. These 
preliminary results are quite encouraging. Some ongoing effort is aimed at improving the performance 
in highly reflective situations and modifying the training to accommodate the solar regime. 
 
 
Generalized OSS training 
 
In the first phase of development of OSS we have focused on single channel (localized) training. This 
form of training leads to an optimal (in terms of the number of nodes used to achieve a prescribed 
accuracy) node selection for the individual channels. When the RT model operates on the same set of 
channels, it is advantageous to consider all the channels at once in the training. In the generalized 
“multi-channel” training one exploits the correlations in the spectrum in an attempt to maximize the 
number of nodes that are common to several channels and thereby reduce the total number of nodes 
used to describe the channel set. 
 
Fig. 2 shows the correlation matrix for the 645-2690 cm-1 domain (AIRS instrument bandwidth).  
 
Two methods are currently being used for the multi-channel training. The first method is a direct 
extension of the single channel selection approach in which one keeps on adding nodes until the rms 
difference between exact and approximate radiances fall below a given threshold for all individual 
channels within a set of N (not necessarily contiguous) channels. The second method is a clustering 
type technique. Starting from the complete set of candidate nodes for the group of channels, this 
method successively reduces the number of nodes by merging together nodes containing highly 
correlated information. The correlation radius is a function of the desired accuracy. The latter 
approach is faster than the first method and may handle much wider spectral domains. However more 
work is required to make its selection optimal. 
 
Examples of application of generalized clear-sky training are shown in Table 1. For 1cm-1 wide 
boxcar functions, the gains in speed (and memory requirements) over the single channel approach are 
as large as 10-20 (for AIRS our current gain estimate is ~7, which brings the average number of nodes 
per channel to ~0.3). In cloudy skies, spectral variations in cloud/aerosols optical properties tend to 
reduce the large-scale correlations and the anticipated gain in performance is smaller. 
 
Note that there is no attempt to deal with correlations at the channel level. This aspect is implicitly 
addressed in the OSS multi-channel training. For instance, if two channels are “perfectly” (i.e. within 



model accuracy) correlated, they will be attributed the same nodes and the time spent performing the 
computation for the two channels will be half that required for performing the same computation with 
our original approach. There is little to be gained by training the model on spectra compressed using 
PCA or other linear radiance transformation. However, if desired, such transformations can be 
performed in the model (with no penalty on the computational efficiency) by simply modifying the 
OSS weights. 
 

 
 
Fig. 2: Inter-nodal correlation for the 645-2690 cm-1 domain. The figure shows the spectral 
position of the nodes which are within a correlation radius of 0.01 of any given node in the 
spectral domain. 
 
 
Table 1: Average number of selected nodes per channel for 1 cm-1 wide boxcars, with single 
and multi-channel training. 
 

Interval 
(cm-1) 

Interval width 
(cm-1) 

# nodes 
(single channel approach) 

Gain  
(multi-channel approach) 

645-675 30 286 9 

780-820 40 141 6 

645-745 100 1047 20 

780-880 100 248 10 

780-980 200 478 16 

 
 



Generalized cloudy training 
 
The main challenge with the generalized training is coming up with the proper methodology for 
handling of the slowly varying spectral functions (cloud and/or surface optical properties) across wide 
intervals. In this case, one cannot simply extend the data set to include a mixture of clear and cloudy 
scenes and train the model as it is done for clear-sky applications. Because of the large magnitude of 
their impact on the radiance, clouds tend to drive the selection at the beginning of the process. The 
presence of clouds tends to smear the spectral features in the TOA radiances and makes the radiance 
spectra easier to fit, which results in a degraded clear-sky performance. This problem may be partially 
circumvented by separating clear and cloudy scenes and minimizing the rms errors separately for the 
two sets. However, it is our experience that the solution remains overly sensitive to the range of cloud 
optical depths used to in the training scenes, an indication that appropriate physical constraints are 
lacking. 
 
The preferred training approach (used as a benchmark in our future work) follows a two step 
procedure. In the first step, we apply the generalized clear-sky training described in the previous 
section. In the second step, the same selection algorithm operates on an initial set of nodes obtained 
by redistributing the nodes selected in the first step at regular frequency intervals within the specified 
domain. In this operation, the original wavenumber information associated with each node is lost. The 
monochromatic radiances at the newly assigned νj‘s (corresponding to the new frequency grid) are 
used to predict the impact of the slowly varying functions across the entire domain.  
 
The physical basis of the approach is illustrated in Fig. 3.  In OSS, the same node i represents a 
number of “micro-intervals” (denoted by the index ik) with same absorption properties. The OSS 
weights can be interpreted as the sum of the widths Δνik of these micro-intervals divided by the total 
width of the domain. In the absence of clouds/aerosols, the radiances in the micro-intervals associated 
with the same index i are identical. In the example shown in Fig.3, the contribution of the cloud to the 
radiance is linear in wavenumber. In this case, the cloudy radiances in the micro-intervals ik can be 
predicted from the radiance values computed at two arbitrarily selected wavenumbers ν1 and ν2 within 
the domain. The expression for the average radiance in any channel within the domain is simply 
obtained by summing up the contributions of all the micro-intervals for all nodes, 
 

( ) ( ) ( )( ) ( ) ( )1 2 1 1 21ik
i ik i ik i i i i i

i k ii

R w a R a R w R w R 2
ν ν ν ν
ν

Δ ′ ′= + − =
Δ∑ ∑ ∑ ν+                                   (2) 

 
The only difference between Equations (2) and (1) (aside from the fact that some nodes have been 
duplicated through the cloudy training process) is the introduction in (2) of an extra frequency index 
for the monochromatic radiance calculations. The selection scheme does not duplicate a node if 1) the 
molecular absorption is so strong that clouds do not affect the radiances or 2) the impact of spectral 
variations in cloud properties over the domain spanned by the micro-regions it represents is negligible.  
 
The above method has the advantage that it is robust and stable with respect to the choice of training 
scenes. It also guarantees by construction that the initial clear-sky solution remains intact. Note that 
for the selection process to converge, it is important to impose the following constraint on the weights, 
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The applicability of the method is not limited to the linear case. For more complex functions, some 
nodes may be tripled, quadrupled…etc, depending on the degree of the polynomial that fits the cloudy 
radiances over wider intervals. 
 
Fig. 4 shows an example of application of the generalized cloudy training to AIRS. Only the first 
1262 channels were considered. In this case, cloud/aerosols optical properties were modeled by 
starting with randomly generated piecewise linear functions (20 cm-1 segments) and by fitting a 
polynomial through the hinge points to smooth the functions. The loose constraints on the spectral 
slope and change of slope at the hinge points were derived from realistic cloud/aerosol absorption 
spectra and correspond to a worst case scenario. This particular training set was designed to 
accommodate a broad range of ground-based and airborne applications. Note that in Fig. 4 there is a 
tendency for the performance to improve as clouds become more opaque, a desirable property of the 
approach. For this case, the average number of nodes per channel is 0.82 (0.59 for clear-sky selection) 
compared 1.98 with the current single channel training, which represents a gain of 2.4 (3.4) in model 
speed. An AIRS model is currently being trained using more realistic water/ice cloud properties. In 
this case, higher computational gains may be expected. 
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Fig. 3: Example of clear-sky (1st step) node selection (dashed lines) for an arbitrary spectral 
domain encompassing a single broadband channel or multiple high-resolution channels. The 
4 other spectral sub-intervals represented by the node i=2 are indicated by the solid vertical 
lines. Clear sky radiances are the same in all the 5 sub-intervals. The impact of clouds on 
the radiances for this node (linear case) is indicated by the upper dashed line. 
 



        
 
Fig. 4: OSS model accuracy in multi-layer cloudy (purely absorbing case) atmospheres. The 
upper left plot represent the rms errors in the clear-sky based on 48 profiles from the UMBC 
standard data set. The remaining plots correspond to different ranges of cloud optical depth 
in 3 atmospheric layers (low, medium, high). The range of optical depth (OD) corresponding 
to each layer is indicated by the 3 indices at the top of each plot, the lower layer being 
represented by the 1st index. The code used is: 0 = clear, 1= OD < 0.5, 2= OD <1, 3= OD < 2, 
and 4= OD > 2. 
 
 
Summary 
 
The current development of OSS addresses applications to scattering atmospheres and generalized 
multi-channel training. We have shown that models produced with the current clear-sky training 
should provide satisfactory results in cloudy skies in the thermal regime (both microwave and 
infrared). Until the cloudy training is refined, some caution should be exercised when using those 
models in highly reflective clouds and at large viewing angles. A second important development is the 
generalization of the training to multiple channels. Speed gains over the current approach of up to 10-



20 (depending on the instrument) may be anticipated when training OSS to simultaneously fit 
radiances/transmittances over the entire set or a subset of high resolution channels. The effect of 
clouds/aerosols is to reduce the large scale correlations. For cloudy radiances the minimum gain (i.e. 
worst case) is around 2-3 for AIRS. As part of this effort we also introduced a new approach for 
handling spectral variations in cloud/surface optical properties in the training. This approach clearly 
distinguishes between the application of the OSS formalism for modeling the gaseous transmittance 
and its extension to radiance modeling for capturing the slowly varying spectral functions across wide 
spectral domains. The robustness of the training is key requirement for providing unsupervised 
training capabilities and for minimizing model validation work. Future work includes refining the 
OSS training in scattering atmospheres, both in the thermal and solar regimes, and improving the 
generalized multi-channel training. A first stable version of an AIRS model trained with this latter 
scheme should be available in the fall of 2005. 
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