
ABSTRACT
The Community Satellite Processing Package (CSPP) provides worldwide users an
easy-to-install, easy-to-use data processing capability for NPP satellite observations. In
this technical presentation we illustrate open-source tools, techniques and work-flows for
bringing NPP product data to end-users quickly and easily. This includes generation of
quick-look imagery and verification reports, forming interactive visualizations, and
creating bridges to third-party services capable of manipulating direct-broadcast (DB)
meteorological data. Also included is discussion of techniques and software used in the
construction of the CSPP.

CSPP SOFTWARE
The CSPP bundles precompiled open-source software in C++ and Fortran
with script automation. This simplifies deployment, processing and
manipulation of NPP data for end-users. In order to manage the complexity of
the NPP processing as implemented in the Raytheon Algorithm Development
Library (ADL) hosted operational algorithms, Python has been included in the
CSPP tool set. The included Python script environment (“ShellB3”) has many
of the functions available in the commercial IDL and MATLAB packages built-
in. Also included are modules immediately useful for NPP data access, on top
of which SSEC provides automation utilities, wrappers, and diagnostic tools.

Python Module CSPP Usage
h5py + pytables Access NPP HDF5 files

xml.etree.ElementTree Parse ADL guidebook XML files
numpy + scipy Large matrix operations

pygrib Read NWP for EDR ancillary creation
ctypes Read/write “BLOB” ADL file formats

pyresample Resample swaths to gridded images
matplotlib + basemap Create raster/vector images

netcdf4py + pycdf Access/create NetCDF3/4 for AWIPS

ATMS SDR GRANULE QUICKLOOKS

load libraries
from pylab import *
import h5py, numpy, glob
from mpl_toolkits.basemap import Basemap

open a directory with a pass of CSPP SDR files in time order
sdrs = [h5py.File(filename) for filename in sorted(glob.glob('data/SATMS*'))]
read all unscaled BTs, and their scaling slope and intercept
bts = [f['All_Data']['ATMS-SDR_All']['BrightnessTemperature'][:] for f in sdrs]
btscale = [f['All_Data']['ATMS-SDR_All']['BrightnessTemperatureFactors'][:] for f in sdrs]
scale them and concatenate into a contiguous array
atms_bt = numpy.concatenate([(x*m+b) for (x,(m,b)) in zip(bts,btscale)])

load latitude and longitude arrays
geos = [h5py.File(filename) for filename in sorted(glob.glob('data/GATMO*'))]
lat = numpy.concatenate([f['All_Data']['ATMS-SDR-GEO_All']['Latitude'][:] for f in geos])
lon = numpy.concatenate([f['All_Data']['ATMS-SDR-GEO_All']['Longitude'][:] for f in geos])

build a map projection
m = Basemap(projection='stere',lon_0=-100.0,lat_0=90.,lat_ts=40.0,\
 llcrnrlat=12.0,urcrnrlat=58.0,\
 llcrnrlon=-120.0,urcrnrlon=-35.0,\
 rsphere=6371200.,resolution='l',area_thresh=10000)
m.drawcoastlines(); m.drawcountries(); m.drawstates()

project a contour map with 100 levels for Channel 16
x,y = m(lon, lat)
m.contourf(x, y, atms_bt[:,:,15].squeeze(), 100)
colorbar()
title('ATMS BT Chnl 16')
show()

VIIRS SDR GRANULE QUICKLOOKS

In contrast to the simple ATMS contour plot projection of a low-resolution
dataset, VIIRS requires swath-to-gridded-image resampling and a bow-tie
interpolation. However, end-to-end generation of a 2048x2048 image from a
3200x7000 input swath is still completed in seconds using pyresample.

BRIDGING VIIRS to AWIPS

Using the same ll2cr and fornav mapx-based open reprojection software as
is used to export MODIS to AWIPS, scripts readily automate conversion of
VIIRS direct broadcast swaths into AWIPS-consumable form.

VERIFYING CSPP-ADL vs IDPS

Test products for CSPP SDR
binaries are statistically verified
against corresponding IDPS
operations granules. This is
achieved in part using ‘glance’,
a generalized large dataset
c o m p a r a t o r a n d r e p o r t
genera tor. Th is too l can
ope ra te on HDF4 /5 and
NetCDF products among other
formats, and can be configured
to generate a variety of reports
and score for a variety of
satisfaction criteria.

Open-Source Tools for the
Community Satellite Processing Package

R.Garcia,	
 K.Strabala,	
 E.Schiffer,	
 G.Cureton

