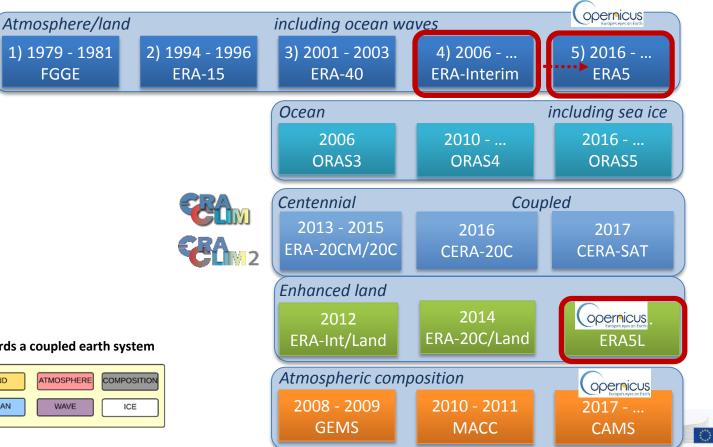
The Use of Satellite Radiances in the ERA5 Reanalysis

Bill Bell,

Paul Berrisford, Gionata Biavati, Per Dahlgren, Dick Dee, Rossana Dragani, Manuel Fuentes, Hans Hersbach, Andras Horanyi, Joaquín Muñoz-Sabater, Carole Peubey, Raluca Radu, Iryna Rozum, Dinand Schepers, Adrian Simmons, Cornel Soci, Jean-Noël Thépaut and Sebastien Villaume.

Climate Change

European Centre for Medium-Range Weather Forecasts


O v e r v i e w

- Background the ERA5 Reanalysis
- Radiance Assimilation in ERA5
 - Reprocessed datasets (*e.g.* CMSAF SSMI)
 - Improved forward modelling (*e.g.* time varying CO₂)
 - Early-era sounding data (VTPR, 1972-79)
- Concluding remarks

Reanalyses Produced at ECMWF

European Commission

Towards a coupled earth system

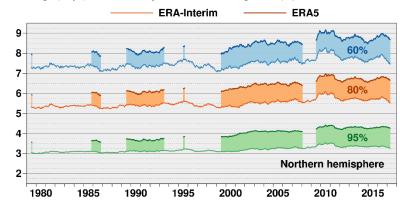
LAND	ATMOSPHERE	COMPOSITION
OCEAN	WAVE	ICE

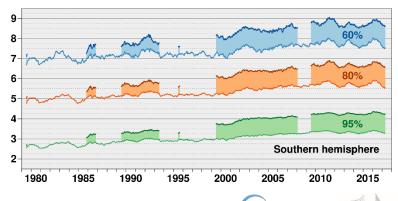
What's new in ERA5?

	ERA-Interim	ERA5
Period	1979 – present	Initially 1979 – present, later addition 1950-1978
Streams	1979-1989, 1989-present	Parallel streams, one/two per decade
Assimilation system	2006, 4D-Var	2016 ECMWF model cycle (41r2), 4D-Var
<i>Model input</i> (radiation and surface)	As in operations, (inconsistent sea surface temperature)	<i>Appropriate for climate</i> , e.g., Evolution of greenhouse gases, volcanic eruptions, sea surface temperature and sea ice
Spatial resolution	79 km globally 60 levels to 10 Pa	31 km globally 137 levels to 1 Pa
Uncertainty estimate		Based on a 10-member 4D-Var ensemble at 62 km
Land Component	79km	ERA5L, 9km (separate, forced by ERA5)
Output frequency	6-hourly Analysis fields	<i>Hourly</i> (three-hourly for the ensemble), <i>Extended list of parameters</i> ~ 9 Peta Byte (1950 - timely updates)
Extra Observations	Mostly ERA-40, GTS	Various reprocessed CDRs, latest instruments
Variational Bias correction	Satellite radiances, radiosondes predetermined	Also ozone, aircraft, surface pressure, newly predetermined for radiosondes.

ERA5 - status

As part of C3S, the production of ERA5 is well underway:


- Higher resolution, hourly output, uncertainty estimate.
- Produced in parallel streams
- Public Release 2010-2016 end June 2017
- Release other stream to be done in stages within Climate Data Store from 2018.


The performance of ERA5 is very promising in the troposphere.

- improved global hydrological and mass balance
- reduced biases in precipitation,
- refinement of the variability and trends of surface air temperature.

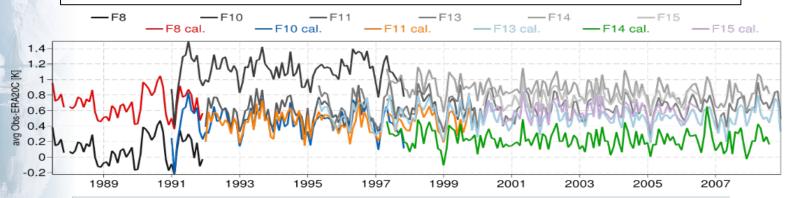
There are some imperfections, though

- Stratospheric temperature biases
- Initially there were quality issues over the southern hemisphere in the 1980s (delay in production stream)

€C FCI

European

Range (days) when 365-day mean 500hPa height AC (%) falls below threshold


Climate Change

Reprocessed radiances: CM-SAF SSM/I

✓ SSM/I data covering the 1987-2009 period reprocessed by CM-SAF: better calibration, recovery of extra-data, & better knowledge of instrument characteristics

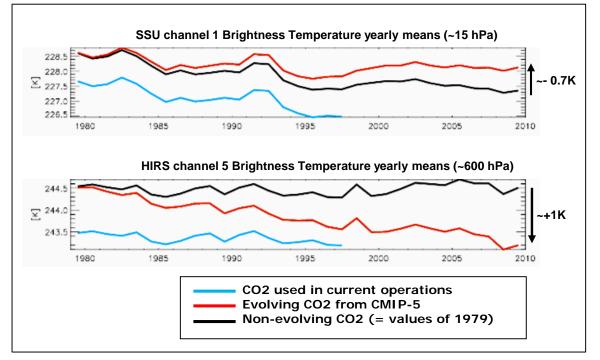
✓ Prior to assimilation in ERA5, the data have been compared to off-line RTTOV simulations using interpolated fields from ERA-Interim and ERA-20C.

Mean departure SSM/I-ERA20C in Ch4 (37H), Ocean, ice-free and non-rainy scenes, with/without intercalibration offsets

Differences between grey and colour curves show impact of application of CM-SAF brightness temperature inter-calibration offset

ERA5 - Improvements in forward model

	ERA-Interim	ERA5	
Radiative transfer model	RTTOV-7	RTTOV-11	
CO2 (for IR radiances SSU and HIRS)	Fixed	Evolving CO2 (CMIP5 trends + MACC lat-press variations	
Rainy SSM/I Radiances(Microwave Imagers)	1D+4D VAR	4DVAR	
All-sky Assimilation	Clear-Sky Assimilation except 1D+4DVar SSM/I	All-sky for: all microwave imaging and WV sounding channels	
Response-functions:			
- SSU cell pressure	Fixed cell-pressure	cell-pressures corrected (Saunders et al. 2013)	
- HIRS	- Standard	Shifted spectral response functions for NOAA-11 and -14 (Chen et al. 2013)	
- Other satellites	As in operational 31r2	As in operational 41r2	



ERA5 - Accounting for changing CO₂

Climate Change

Simulated brightness temperatures

Vertical Temperature Profiling Radiometer

VTPR (McMillin et al. 1973) HIRS/2 (Schwalb 1978) 101.7° (sun-synchronous) 98.9° (sun-synchronous) Inclination Satellite altitude 1,464 (1,510) km 870 (833) km (nadir) 55 x 57 km (nadir) 17.4 x 17.4 km Horizontal resolution (scan edge) 67 x 91 km (scan edge) 29.9 x 58.5 km $\pm 30.3^{\circ}$ $\pm 49.5^{\circ}$ Scan angle Swath 1,876 km 2,240 km #FOV 23 56 Two / satellite One / satellite #Instrument NOAA-2 NOAA-3 NOAA-4 AMRU A NOAA-5 72 73 74 76 76 77 78 79 Shinya Kobayashi

MSU 8911

Climate Change

NOAA 2/VTPR Set 1

Ch

5 6 8

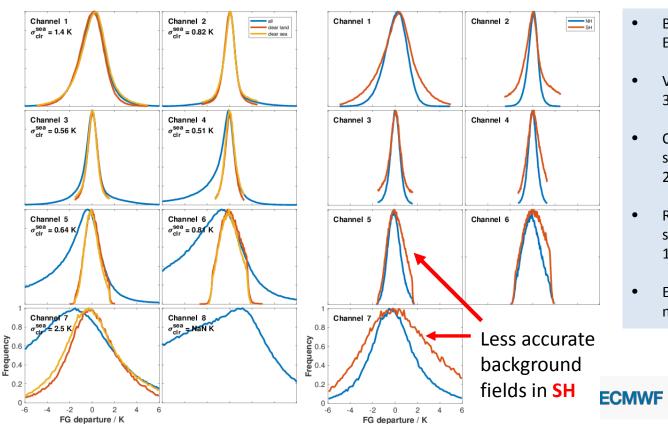
7

NOAA	5/HIRS/2
------	----------

European

Commission

	Center wavenumber (cm ⁻¹)	Absorption band	Half- width (cm ⁻¹)	Ch	Center wavenumber (cm ⁻¹)	Absorption band	Half-width (cm ⁻¹)
	667.50	15μ CO ₂	3.6	1	668.02	15μ CO ₂	3
	677.40	15μ CO ₂	11.1	2	679.94	15μ CO ₂	10
	694.95	15μ CO ₂	12.4	3	690.44	15μ CO ₂	12
	708.25	15μ CO ₂	10.7	4	704.69	15μ CO ₂	16
				5	717.43	15μ CO ₂	16
	725.35	$15\mu CO_2$	11.4	6	732.47	$15\mu CO_2$	16
	747.40	15μ CO ₂	12.0	7	748.48	15µ CO ₂	16
	835.75	Window	7.1	8	900.64	Window	35
				9	1029.48	O ₃	25
				10	1217.77	6.3H ₂ O	60
	500.65	40.11.0	45.0	11	1368.05	6.3H ₂ O	40
	533.65	18μ Η ₂ Ο	15.3	12	1485.76	6.3H ₂ O	80
McMillin et al. (1973)			13	2190.60	4.3μ CO ₂	23	
			14	2210.09	4.3μ CO ₂	23	
				15	2237.76	4.3μ CO ₂	23
			16	2269.43	4.3μ CO ₂	23	
				17	2360.42	4.3μ CO ₂	23
			18	2514.97	Window	35	
vashi		Kidwell (ed) (1998)		19	2654.58	Window	100
ya	5111			20	14453.14	Visible	1000



Preparation for assimilating VTPR in ERA5

VTPR first guess departures

For NH and SH.

VTPR first guess departures for May 1978.

COPERINGUES Europe's eyes on Earth

- Builds on experience gained in ERA-40 and JRA-55
- VarBC (4 thicknesses, constant, 3 scan angle predictors)
- Cloud detection based on HIRS scheme at ECMWF (Krzeminski, 2009)
- Remaining challenges: channel selection, **R** tuning, **B** for 1972-1979
- Expect 1970s stream(s) to start mid-2018.

European

Commission

opernicus

Concluding remarks

- The ERA5 reanalysis is currently in production (1979-present) performance is significantly improved *wrt* ERA-Interim.
- ERA5 uses a 2016 ECMWF model cycle (41R2) & benefits from a range of upgrades in the use of satellite data implemented over the last 10 years.
- Early streams (1950 1979) are due to start in 2018, and complete by end-2018. They present some challenges, *e.g.*: optimisation of **B**, and optimising the use of early radiance datasets (*e.g.* VTPR).
- ERA5 benefits from a number of reprocessed satellite datasets (*e.g.* CM-SAF SSMI) and other innovations in forward models, as will future reanalyses.

