All-sky microwave radiance assimilation in the JMA global NWP system Masahiro Kazumori, Takashi Kadowaki and Hiroyuki Shimizu

Numerical Prediction Division, Forecast department, Japan Meteorological Agency

Current configuration of JMA global NWP system and satellite radiance data use Forecast model(GSM: Global Spectral Model) and 4D-Var data assimilation (DA) system

- Outer model: TL959L100 (horizontal reso. 20km, top 0.01hPa)
- Inner model: TL319L100 (horizontal reso. 55km, top 0.01hPa)
- 6-hr assimilation window, incremental 4D-Var DA
- Analysis variables: Wind, surface pressure, specific humidity and temperature lacksquare
- Climatological background error covariance matrix **B** in 4D-Var DA lacksquare
- 11 day forecast from 12 UTC and 5.5 day forecast from 00, 06, 18

All-sky assimilation of microwave imager and humidity sounder radiance data

All-sky assimilation of AMSR2, GMI, SSMIS F17, F18, MHS and addition of WindSat/Coriolis, MWRI/FY-3B,C

Clear-sky MW radiance assimilation

RTM: RTTOV-10 (rttov_direct, rttov_k) Input profile: Temperature, Water vapor from GSM Thinning: 200 km grid-box thinning for MW imager Used MW imager: AMSR2, SSMIS (F17, F18), GMI Used channels: 19V, 23V, 37V, 89V clear-sky oceanic data from MW imagers MW humidity sounding ch. 183 GHz clear-sky data

DA experiments for comparison

All-sky MW radiance assimilation **RTM:** RTTOV-10 (rttov_scatt, rttov_scatt_ad) Input profile: Temperature, Water vapor, cloud liquid water, cloud ice water, cloud fraction, rain, snow from GSM Thinning: Averaging with inner model grid and 150 km distance thinning for MW imagers Used MW radiance for all-sky assimilation: AMSR2, SSMIS (17,18), GMI, WindSat, MWRI **MW Imager's used channels:** 19V, 23V, 37V over

- UTC initials.
- Radiative Transfer Model: RTTOV-10.2
- Bias correction Method for radiance data: VarBC **Satellite radiance data for operational use**
- Microwave imager: AMSR2/GCOM-W, GMI/GPM, SSMIS/DMSP
- Microwave sounder: AMSU-A/Aqua, AMSU-A/NOAA, Metop, MHS/NOAA, Metop, ATMS/S-NPP, NOAA-20, SAPHIR/Megha-Tropiques
- Infrared radiance: AIRS/Aqua, IASI/Metop, CrIS/S-NPP, NOAA-20, CSR/GOES, Himawari-8, Meteosat

Monitored and evaluated radiance data

AMSU-A, MHS/Metop-C, IASI/Metop-C, MWHS-2/FY-3C

Addition of outer-loop update in the DA system

4D-Var cost function:

 $J(x) = \frac{1}{2} \left(x - x_b \right)^T B^{-1} \left(x - x_b \right) + \frac{1}{2} \left(H(x) - y \right)^T R^{-1} \left(H(x) - y \right) + J_c$

x is the control variable, x_h is the background state, y is the vector of observations Assimilation = Finding the minimum of J

DA system: JMA global 4D-Var DA system **Period:** From June to October in 2017, From Nov. 2017 to Feb in 2018

11-day forecast from 12 UTC initial conditions and 5.5-day forecast from 00, 06, 18 UTC initial conditions.

ocean

MW humidity sounder's used channels: 183 GHz over land and ocean (GMI, MHS only. Others are clear sky assimilation)

RAOB

RH

Aircraft

Wind

lector

FG Departur

-1.2 -0.6 0.0

-1.2 -0.6 0.0

Better Worse

FG Departure

Obs. error setting: Geer A.J. and P. Bauer (2011) symmetric observation assignment based on cloud amount Super-obs.: MW imager radiance data are averaged in the inner model grid and thinned in 150 km distance. QC: Data removal in model biased area and convective cloud conditions (e.g., cold sector for MW imager radiance data and deep convective conditions for MW humidity sounder radiance data)

TEST: all-sky + outer-loop **Results of DA experiments** CNTL: same as operation **Improved fits in FG departure** Changes in Std. of FG departure FG Departure Consistent improvements in various observations (e.g., temperature and humidity sensitive observations) -0.4 0.0 -2.4 -0.8 0.4 -1.8 Improved fits to AMV FG Departure AMV^[hPa] 150 (i.e. Improved wind fields) Wind Vector⁶⁰⁰ Red: Jun. to Oct. 2017 Green: Nov. 2017 to Feb. 2018 -1.8 -2.4 0.0 0.5 Change in STDDEV [%] Change in STDDEV [%] Better Worse

Improved TC track prediction

Atlantic Ocean

Non-linear effects are considered from the addition of the outerloop. Comparable convergence of the cost function was obtained at the end of the final minimization. Single

Improved FG (First-Guess) fields (FT=3 \sim 9) of T, RH, WV were improved.

The outer-loop iteration brought significant improvements in the troposphere even when only the same observation dataset was used as the operational system (clear-sky assimilation).

Summary and plans

Effects of all-sky MW radiance data assimilation with outer-loop introduction in JMA global DA system were evaluated.

- Positive impacts on temperature, moisture and wind analyses globally. ${\bullet}$
- Improved TC track and intensity prediction.

The operational implementation is planned in this November together with a hybrid background error covariances in the DA system. All-sky MW radiance assimilation for remaining MW sensors (ATMS, SSMIS 183, SAPHIR, MWHS-2) are planned in next year.

The 22nd International TOVS Study Conference (ITSC-22), Saint-Sauveur, Québec, Canada, 31 October - 6 November 2019