XIII International TOVS Study Conference Ste. Adele, Canada, 29 October - 4 November 2003

Mid-tropospheric CO₂ retrieval in the tropical zone from AIRS observations

Cyril Crevoisier, Alain Chédin, Sylvain Heilliette, Noëlle A. Scott, Soumia Serrar and Raymond Armante

Laboratoire de Météorologie Dynamique Palaiseau, France

Introduction

• Distribution of CO_2 in the atmosphere and its time evolution can be used to quantify surface fluxes.

• Retrieving temporal and spatial variability of atmospheric CO_2 with spatial observations has been proven with the low-spectral resolution NOAA/TOVS instruments (*Chédin et al 2002a, b and 2003*).

• The new advanced infrared sounder AIRS, launched in May 2002, may improve our capability to monitor CO_2 from space.

• As for TOVS, a neural network inference scheme is used to estimate mid-tropospheric CO_2 concentration.

• So far, the study is limited to sea/tropics/night cases.

This work is supported by the European COCO project whose aim is to retrieve surface fluxes using CO_2 concentration as estimated from space.

General scheme of the retrieval

P S

<u>Selection of a restricted set of CO₂ channels</u>

A set of 43 AIRS channels is selected with the new Optimum Sensitive Profile method (*Crevoisier et al. QJRMS 2003*). They present :

- a high sensitivity to CO_2 atmospheric variations.
- no or low sensitivity to other atmospheric components $(H_2O, O_3, N_2O, CO, surface properties)$.
- a good distribution along the vertical.

(computation from the 4A model for a tropical situation)

Neural Network training

•The networks are trained on the TIGR database : 872 tropical atmospheric situations (T(P), Q(P), O3(P) and constant profiles for trace gases - CO_2 varies in the range of 352-392 ppmv).

➡ No preliminary first guess.

•Brightness temperatures are computed using the 4A radiative transfer forward model (*Scott and Chédin 1981*

http://ara.lmd.polytechnique.fr 2003).

- Noised T_{B} .
- One network for each scan angle.
- The RMS convergence of the network is 1.8 ppmv (TOVS: 4 ppmv).

<u>Bias removal</u>

The neural networks are trained with simulated data.

biases between simulations and observations must be removed

Clear sky detection

- Three kinds of tests detect the unclear fields-of-view:
 - 1-8 differences $T_B(AIRS)-T_B(AMSU)$
 - 2-5 estimations of $T_B(AIRS)$ from $T_B(AMSU)$ through regressions
 - 3-2 differences between window channels

presented to the networks.

Estimation of CO₂

Maps of retrieved mid-tropospheric CO_2 concentrations are produced on a two-week basis at a resolution of $15^\circ \times 15^\circ$ for the period April-August 2003.

Estimation of CO₂

Our present knowledge of the distribution of mid-tropospheric CO_2 is very limited : a few commercial air-liner observations since 1993 (*Matsueda et al. 2002*), CO_2 concentration retrieved from TOVS observations (*Chédin et al. 2003*).

Study of the seasonal cycle.

P S

CO2 retrieval from AIRS observation

Conclusion...

• Mid-tropospheric CO_2 concentration has been retrieved from AIRS observations in the tropics, over sea at night from April to August 2003 on a two-week basis.

Plausible seasonal cycle.
Realistic geographical structures.

... and future works

• New networks are being trained with an improved set of channels in order to increase the quality of the retrieval.

- The retrieval will be extended to land/daytime cases.
- A preliminary study has shown the feasability of extending the retrieval to temperate regions that seem out of reach for TOVS.
- Finally, the retrievals will be used in synergy with transport models to constrain the retrieval of surface carbon sources and sinks.

