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Introduction  
 
 The NASA EOS AQUA high-spectral resolution Atmospheric InfraRed Sounder 
(AIRS) and the Advanced Microwave Sound ing Unit (AMSU) were successfully launched 
into a low earth sun-synchronous polar orbit on May 13, 2002 at an altitude of 705 km.    
Five months later, NESDIS started to distribute spatially and spectrally thinned radiances to 
Numerical Weather Prediction (NWP) centers.   The thinned dataset contains 324 out of 2378 
channel radiances for every 18th AIRS fields of view (fovs).  (There are 3x3 AIRS 15 km 
fovs within every AMSU 42 km fov; the 18th fov is the center AIRS fov associated with 
every other AMSU fov.)   Each dataset include observations from a six minute period, hence 
there are 240 such “granules” per day.  The thinned granule dataset also include all AMSU 
channels.  The impact of AIRS at ECMWF was been reported to be “small, positive and 
persistent” (McNally, private communication) and the data are now used operationally.   The 
impact at NCEP was reported to be slightly positive, and much smaller than the impact from 
assimilating the first NOAA AMSU sounder data in 1998.   One of the first questions that 
come to mind is how can a technically advanced high-spectral resolution infrared sounder 
like AIRS with its excellent signal to noise performance and relatively high vertical 
resolution have such a small impact.   The answer may be  due to spatial thinning and the 
current state of science for radiance assimilation, which is to use only cloud-free radiance 
observations.   The percentage of assimilated AIRS channel radiances can range from 100% 
for channels peaking in the upper stratosphere, above the clouds, to 5% for channels peaking 
in the lower atmosphere.   However, because the 1 km vertical resolving power of AIRS is 
concentrated in the lower atmosphere, the lower peaking and likely cloud contaminated AIRS 
channel radiances are the most important.   Given the very small areal coverage of AIRS data 
being assimilated, due to clouds, the small impact of AIRS, especially in the lower 
troposphere, is to be expected.  So how can AIRS have a larger impact?   We believe the 
answer is to use more AIRS data by assimilating cloud-contaminated or cloud-cleared 
radiances.  Another option is to assimilate the AIRS retrievals of atmospheric temperature, 
moisture and ozone profiles, which will become available in near real- time during 2004.   A  
key reason for distributing AIRS products to NWP centers is to enable the NWP community 
as well as the product generators to learn how to best produce and utilize high-resolution 
infrared sounder data prior to the operational CrIS and IASI instruments.  So the 



disappointment of a small impact should be followed by intensive activities to use more 
AIRS data.  One of the goals for 2004 from the AIRS Science Team is demonstrate the high 
quality of AIRS cloud-cleared data and deliver it to the NWP community.  The yield of 
successful cloud-cleared fovs is about 50%.  The purpose of this paper is to show the large 
improvement in retrieval accuracy using AIRS, when compared to AMSU , in the presence of 
clear and partly cloudy fovs, and also for cases that have been cloud-cleared.  We hope  the 
outstanding performance of  AIRS retrievals shown in this paper will encourage the NWP 
community to assimilate cloud-cleared radiances.  The algorithms for deriving products, 
including clear detection and cloud-clearing, from AIRS /AMSU can be found in the special 
AQUA IEEE issue ( Goldberg et al. (2003), Susskind et al. (2003)).    
 
Retrieval Accuracy in Clear and Partly Cloudy Conditions 
 
 The clear fov detection techniques and how they are applied are described in greater 
detail in Goldberg et al. (2003).  There are three key tests.  The first test predicts a single 
AIRS channel at 2390 cm-1, which peaks near 850 mb,  from AMSU channels 4, 5 and 6, the 
second test computes the spatial variability of the 2390 cm-1 for a 3 x 3 array of AIRS fovs,  
and the third test, ocean only, compares the AIRS sea surface temperature (SST) retrieval 
with the NWP model SST.  The results shown in this paper will be based on regression, 
trained using the ECMWF analysis.   The regression algorithm is based on principal 
component analysis (PCA) and details are also given in Goldberg et al. (2003).   Eighty five 
principal component scores (PCS) along with AMSU brightness temperatures are used for  
linear regression predictors.  The first experiment was to generate a set of coefficients for 
“clear” fovs.   The ECMWF data used for training is screened for outliers, because  we 
cannot assume that the model is perfect everywhere.  However for many situations the model 
analysis is rather accurate.  The outliers are determined by removing cases with large 
differences between measured and computed radiances.   We also generated coefficients for 
clear to partly cloudy situations.  These cases were determined by simply using test 1.  If the 
difference between the predicted AIRS minus the observed 2390 cm-1 AIRS is larger than 2 
K,  the fov is determined not to be  too cloudy (clear, partly cloudy or low clouds).   This 
accounts for about 60 % of the data.  The fovs declared clear are approximately 5% of the 
data.   Figure 1 compares retrieval accuracies from  clear-only and partly cloudy situations.   
The figure also compare AIRS vs AMSU-only retrieval accuracies.   The “accuracy” curves 
shown in this figure is  the root mean square (rms) difference between the retrieval and 
ECMWF analysis for an independent ensemble.  The solid curves are the retrieval rms 
differences  for ocean clear only cases, whereas the dashed curves are the rms differences for 
global non-clear cases. The results demonstrate the large improvement of AIRS over AMSU, 
as well as the very good performance of AIRS even in the presence of cloud contamination.    
The coverage for the clear - partly cloudy areas area shown  in Figure 2.  



 

 
 

 Retrieval Accuracy from Cloud-Clearing 
 
 The cloud clearing algorithm is described in Susskind et al. (2003).   Cloud-clearing 
begins with an AMSU  retrieval of atmospheric temperature,  moisture  and skin temperature.  
The retrieval is used as the first guess in the cloud-clearing algorithm.     After the AIRS 
radiances are cloud-cleared, the cloud-cleared radiances are transformed into principal 
component scores (PCS), and the PCS are used as regression predictors for deriving the 
AIRS/AMSU temperature, moisture and ozone retrieval .  The conversion of radiances to 
PCS also yields the reconstruction score (RS).  The RS provides a measure of how well the 
radiances can be reconstructed, when compared to the input radiances.  A recons tructure 
score of unity indicates that the reconstruction fit is at the noise level.  For cloud-cleared 
radiances, the score can vary from 0.33 to a  number much greater than one.  The RS is near 
0.33 when the entire 3x3 array of AIRS fovs is clear and the cloud clearing algorithm simply 
averages the radiances from the 9 fovs.  When the score is greater than one, the cloud 
clearing has amplified the noise with respect to a single fov.  Figure 3 shows maps of RS for 
different ranges of RS. The map on the upper left (RS<0.5) show the areas (~5%)  that have 
been declared clear (i.e. all 3x3 fovs are clear). The map on the upper right show the areas 
where the cloud-cleared radiance have adjusted noise characteristics that are not larger than 
the original instrument single fov noise (RS< 1).  This area  is about 60% of the total.  So we 

Figure 2: Coverage of partly cloudy 
regions 

Figure  1 Retrieval RMS Errors 
 

 



can restrict the use of cloud-cleared radiances to cases with “zero” single fov noise 
amplication, and still achieve a very good yield.   The lower left shows areas where the score 
is less than 2, and we have  observed that the larger RS are near the edge of clouds. 

 
 Regression coefficients were generated from a training set of cloud-cleared  radiances 
collocated with the ECMWF analysis of temperature, moisture and ozone.   The ECMWF 
data are screened by requiring a 2 K agreement  between  measured and computed radiances 
for 12 channels:  702.7, 706.7, 711, 712.7, 715.9, 724.8, 746.0, 759.57, 965.4, 1468.83, 
1542.35 and 1547.88 cm-1.   The training set was derived from three different days (from 
September 2002, January 2003 and June 2003).   Figure 4 shows the a typical training 
population for a given day.  The retrieval accuracy, compared to ECMWF for dependent  and 
independent ensembles are shown in Figure 5.   The RMS differences are similar to those 
obtained from clear fovs, which were  shown in Figure 1.    We also generated retrieval rms 
differences based on collocated radiosondes.  Figure 6 show the results, along with retrieval 
rms errors from ATOVS.    The AIRS  retrieval errors are significantly lower than ATOVS, 
including the systematic bias.   The larger errors for  the lower tropospheric temperature  are 
probably due to uncertainties arising from collocation temporal and spatial differences. 
However, the difference between the ATOVS and AIRS retrieval remains large.   Previous 
simulation studies have found that AIRS generally reduces the retrieval error by about 0.5K, 
and this appears to be holding for the radiosonde comparison.    For moisture, the retrieval 
errors are significantly smaller than ATOVS.  The natural  large variability of water vapor 
combined with uncertainties in radiosonde-observed water vapor will prevent us to yield the 
10-15% accuracies often reported in simulated studies. 

Figure 3 Cloud-Cleared Reconstruction Scores 



 

 
 

 
 
 

Figure 5   Temperature (K) and Water Vapor (%) RMS difference between AIRS retrieval  
ans ECMWF 

Figure 4.  Distribution of collocated AIRS and ECMWF data used in 
generating regression coeffcients. 



 
 
 
 
 
 
 
 
 

 
 
 
  
 
 
 
 
 
 
 
 
 

 
 

Summary 
 We have demonstrated very good retrieval performance from AIRS in clear, partial 
cloudiness and cloud-cleared fovs.   The  impact in NWP will likely remain small, unless 
AIRS cloud contaminated or cloud-cleared radiances are assimilated.   The challenge for the  
NWP satellite data assimilation community is to assimilate AIRS data in the presence of 
clouds, otherwise the full impact of high spectral resolution infrared observations will not be 
realized. Another option, of course,  is to assimilate AIRS retrievals, which are also derived 
in near real-time.     
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Figure 6   Temperature (K) and Moisture (%) RMS differences 
between retrieval and collocated radiosonde. 
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