

Atmospheric Soundings of Temperature, Moisture and Ozone from AIRS

M.D. Goldberg, W. Wolf, L. Zhou, M. Divakarla, C.D. Barnet, L. McMillin,

NOAA/NESDIS/ORA Oct 31, 2003

Presented at ITSC-13

Risk Reduction Benefits

- Early demonstration of operational processing of high spectral resolution infrared sounder data prior to CrIS, IASI and GOES-R
- Validation of retrieval performance
- Early opportunity for forecast centers to learn how to assimilate advanced IR data
- Demonstration of positive impact for NWP
- WE HAVE A LOT MORE TO LEARN!!!

AIRS Retrievals

- Microwave-only retrieval of sfc emissivity, sfc temperature, sfc type and profiles of temperature, water vapor and cloud liquid water.
- AIRS retrieval of cloud amount and height, cloud cleared radiances, sfc emissivity, sfc temperature, and profiles of temperature, water vapor and ozone.
- AIRS has two retrieval steps very fast eigenvector regression followed by a physical retrieval algorithm.

AIRS Radiance Products

- Spectrally and Spatially Thinned Radiances
- Principal Component Scores (Spatially Thinned)
- Reconstructed radiances (Spatially/Spectrally Thinned)
- Cloud-Cleared radiances (Spatially/Spectrally Thinned)
- Cloud-Cleared PCS (Spatially Thinned)
- Super channel radiances

What have we learned?

- AIRS instrument is extremely stable and accurate
- Only 5% of the globe is clear at a 14 km fov
- Impact on NWP is currently small (remember 5%)
- Cloud-clearing increases yield to 60%
- Retrievals from cloud-cleared radiances are significantly more accurate than AMSU-only.
- Retrievals from cloud-contaminated radiances are also significantly more accurate than AMSU-only

Simulated AIRS

Real AIRS

Regression prediction of ECWMF moisture

How sensitive is the regression solution to clouds?

 Regression should be able to reduce the impact of partial clouds in AIRS fov because of the high spectral resolution of AIRS.

- Each channel has a different sensitivity due to clouds.
 - Generated coefficients for all cases where the predicted AIRS from AMSU difference test is less than 2 K (~50%)

Cloud-Cleared Radiances

Are there benefits to use cloud-cleared data???

5 days of screened collocated ECMWF and CC PCS are used for generating the regression coefficients.

Example of Training Pop. for a given day

- Screen model data by requiring agreement between observed AIRS and model calculated AIRS
- Selected 12 channels

702.7 706.1 711 712.7 715.9 724.8 746.0 759.57 965.4 1468.83 1542.35 1547.88

- All channels < 2 K
- Coefficient generated used 5 days of data

Ocean – screened (sdv 0.32 cm, mean 2.53 cm, 12.6%) Ocean – all (sdv 0.42 cm, mean 2.63 cm, 16%) TPW (Training Population) TPW (white is full population, green is screened (m-c)

Temperature Bias and RMS (Land and Sea Samples) With Cloud Test

Bias and RMS (Deg. K), NSAMP=8238 COLLOCATED RADIOSONDES

Water Vapor Error (Land and Sea Samples) With Cloud Test

% Error, NSAMP = 8238 COLLOCATED RADIOSONDES

Are there benefits to use reconstructed data???

Example of reconstructed brightness temperatures for 2616 cm-

Spectrum from 892 to 902 wavenumber

Green is reconstructed, white is original, yellow is calculated from model

Summary - Encourage!!!

Reconstructed radiances

Cloud-cleared radiances

Cloud-contaminated radiances

Geophysical Retrievals

Plans for IASI and CrIS

- Our AIRS processing system will be adapted for IASI and CrIS.
- Similar geophysical and radiances products will be available.
- We are also actively conducting research to produce trace gas products (CO, CO2, CH4) from AIRS, IASI and CrIS

Backup

TPW Jan 20, 2003

Retr >>>>

Mean diff -.03, std = .29Mean totw = 1.44

retr

Radiance Reconstruction Scores Predominantly < 1

Reconstruction scores >
 1 are over hot ground,
 however because the
 nonlinearity of Planck
 function, these are
 region which has the
 best brightness
 temperature
 reconstructions.

Emissivity from Simulation

IR Emissivity Results

Mean emissivity spectra as a function cloud cleared radiances for 4 different surface types

Ocean = average between 50 S- 50 N

Snow = 90S-80S

Desert = 0-30E, 25-29N

Grass = 90W-80W, 30N-40N