The AMSU Observation Big Correction and Its Application Retrieval Scheme, and Typhoon Analysis

Kung-Hwa Wang, Chien-Ben Chou Central Weather Bureau, Taipei, Taiwan

Introduction

- Variational Retrieval Scheme can get better result under good precision initial guess(Eyre, 1989)
- Important factor is the correction of satellite observation bias and estimated random error
- * Obs err = Sat Obs Tb- Simulation Tb
- Establish a statistical correction model along FOV

Methodology

Minimize Cost function(Rodgers, 1976)

- $J(x) = (x x^{b})^{T} C^{-1} (x x^{b}) + \{y^{m} y(x)\}^{T} E^{-1} \{y^{m} y(x)\}$ * Using Newtonian iteration method(Eyre, 1989)
 - * Surface emissivity (grody 1988)
 - Retrieval parameters: profile of temp.
 and humility, surf. air temp., surf. Pres.,
 ozone, cloud height, cloud amount.

Error covariance

- Back ground error C: 12 hours forecast error by statistic. Prior 24 forecast analysis minus prior 12 hours forecast analysis.(NMC method)
- * Obs. Error E = Instrument bias, data proc. Err, RTE model err., Input parameters' err. => System err + Random err.

Estimate bias correction and random error

- Make sure Obs Tb and Est Tb between –20K & 20K
- If (Est Tb Obs Tb) > 3*RMSE then is bad data
- Tb*=aTb+b for each channel and FOV on 900,000 points
- Concern about input parameters err(12 hours forecast)

Real data retrieval

- * 2002.6.22-23 NOAA-15
- Point was selected when retrieval successful and there are sounding data within 200Km away, SI<20

2002.6.22 927points

- * 592point
- Random
- * Error*7

Successful retrieval convergence rate when random error enlarged

Case	correc tion	x5	x6	x7	x8	x9	x10
1	99.61 %	4.97%	45.12 %	68.07 %	95.10 %	99.10 %	99.57 %
2	96.29 %	3.87%	39.13 %	63.66 %	85.17 %	96.29 %	99.28 %
3	99.35 %	0.27%	8.11%	42.55 %	86.82 %	98.30 %	98.70 %

Sub conclusion

- * Observation error is smaller then background error.
- Over ocean the results of retrieval is better than over land, for surface emissivity is more complicated.
- This adjustment procedure is significant in improvement of the utilization on AMSU data.

Monitoring Typhoon

- It has been examined the relationship between temperature anomalies and the surface wind and central pressure of tropical cyclones.(Kidder, 2000)
- Make Limb Correction to each FOV before retrieval or make different set of coefficient to each FOV. Retrieved RMS error < 1.75K(Zhu,2002)

Real Images before & after Limb correction

Real image before & after Limbcorrection

How to do Limb Correction

- 1. Radiation transfer Model
- 2. Statistical Methods

For the Limb effect is asymmetry

a)Mitchell D. Goldberg (The Limb Adjustment of AMSU-A Observation: Methodology and Validation)

b)Nesdis: NOAA Satellite and information service, Michael Chalfant

The methodology of Limb correction

 $y = X^T b$

- b is a vector of coefficients
- * X are means over latitude bands from a large time period
- * Y The limb adjusted brightness temperature

Least squares fit to the measured data. Define a penalty function

$$F(b) = (X^{T}b - y)^{T}(X^{T}b - y) + \gamma(b - b_{p})^{T}(b - b_{p}) + 2\lambda(1 - u^{T}b)$$

 λ , γ are Lagrange multipliers. X is a matrix of x, y is a vector of means for all latitude bands. u is a vector of ones. b_p is the set of physical coefficients derived from weighting function.

To minimize F with respect to b, derivative and equate to zero

$$2X(X^{T}b - y) + 2\gamma(b - b_{p}) - 2\lambda u = 0$$

solution $b = (XX^T + \gamma)^{-1}(Xy - \gamma b_p - \lambda u)$ constrain $u^T b = 1$

$$\lambda = \left[1 - (XX^{T} + \gamma l)^{-1}(Xy - \gamma b_{p})\right] / \left[u^{T}(XX^{T} + \gamma l)^{-1}u\right]$$

NOAA-16

NOAA17 Ch5 Raw - Peter

m,

Typhoon monitoring &2D & 3D wind vector retrieval

- * 2D wind retrieval algorithm followed Kidder's (2000) paper
- According 250hPa Max. anomalies Temp to define center of typhoon
- * 3D wind is calculated by gradient wind equation
- Appreciate Tong Zhu, Da-Lin Zhang and Allen Huang assistance

Typhoon 2001.10.16

M

2001.10.16.2306

M

Conclusion

- AMSU can be an auxiliary instrument on tropical cyclone observation
- Identify no eye typhoon is useful even with poor resolution
- After significant adjusted AMSU data may improved weather analysis.