

## NPOESS:

### Entering a New Era National Polar-orbiting Operational Environmental Satellite System

Delivering Global Data

## INTERNATIONAL TOVS STUDY CONFERENCE 14

HAL JIBLOOM SPACE SEGMENT PROGRAM MANAGER MAY 263, 20055

### NOAA/NASA/DoD Tri-agency Effort to Leverage and Combine Environmental Satellite Activities

#### <u>Mission</u>

- Provide a national, operational, polarorbiting remote-sensing capability
- Achieve National Performance Review (NPR) savings by converging DoD and NOAA satellite programs
- Incorporate new technologies from NASA
- Encourage International Cooperation <sup>s</sup>



## **Program Schedule**

- 2002 A&O Contract Award
- 2003 NPP Delta Critical Design Review
- 2005 NPOESS **APreliminary Design Review**
- 2006 NPOESS Critical Design Review NPP Ground Readiness
- 2008 NPP Launch
- 2009 NPOESS Ground Readiness
- 2010 NPOESS C1 Launch
- 2011 NPOESS C2 Launch Field Terminal Segment Readiness Initial Operational Capability
- 2013 NPOESS C3 Launch
- 2015 NPOESS C4 Launch
- 2017 NPOESS C5 Launch
- 2020 End of Program



Reliable and timely collection, delivery, and processing of quality environmental data

## **NPOESS** Top Level Architecture



## **NPOESS Satellite and Sensors**



#### X = changed since award

Single Satellite Design with Common Sensor Locations and "ring" Data Bus Allows Rapid Reconfiguration and Easy Integration

## **Development Sensor Highlights**









- Visible/Infrared Imager Radiometer Suite (VIIRS)
  - Raytheon Santa Barbara Prototype in assembly/qual, flight unit in production
  - 0.4 km imaging and 0.8 km radiometer resolution
  - 22 spectral bands covering 0.4 to 12.5  $\mu$ m
  - Automatic dual VNIR and triple DNB gains
  - Spectrally and radiometrically calibrated
  - EDR-dependent swath widths of 1700, 2000, and 3000 km
- Crosstrack InfraRed Sounder (CrIS)
  - ITT Ft Wayne Prototype in qualification, flight unit in production
  - 158 SWIR (3.92 to 4.64 μm) channels
  - 432 MWIR (5.71 to 8.26  $\mu m)$  channels
  - 711 LWIR (9.14 to 15.38 μm) channels
  - 3x3 detector array with 15 km ground center-to-center
  - 2200 km swath width
- Advanced Technology Microwave Sounder (ATMS) NASA
  - Northrop Grumman Electronics Flight unit in protoqual
  - CrIS companion cross track scan
  - Profiling at 23, 50 to 57, 183 GHz
  - Surface measurements at 31.4, 88, 165 GHz
  - 1.1, 3.3, and 5.2 deg (SDRs resampled)
  - 2300 km swath width
- Ozone Mapping and Profiler Suite (OMPS)
  - Ball Aerospace Flight unit in production
  - Total ozone column 300 to 380 nm with 1.0 nm resolution
  - Nadir ozone profile 250 to 310 nm with 1.0 nm resolution
  - Limb ozone profile 290 to 1000 nm with 2.4 to 54 nm resolution
  - Swath width of 2800 km for total column

### VIIRS Dramatically Improves Spatial Resolution & Sampling



Note: MODIS pixel growth rate is similar to AVHRR Source: Raytheon, Santa Barbara Remote Sensing

### Simulation of AVHRR Visible Channel

#### Nadir

#### Edge of Scan



Note: MODIS resolution degrades similar to AVHRR From Raytheon, Santa Barbara Remote Sensing

# MODIS Vegetative Index 10/30/2003

Near Nadir



#### Toward Edge of Scan

![](_page_8_Picture_4.jpeg)

#### Terra 1950 UTC

Aqua 2125 UTC

## Simulation of VIIRS Visible Channel

#### Nadir

![](_page_9_Picture_2.jpeg)

#### Edge of Scan

![](_page_9_Picture_4.jpeg)

From Raytheon, Santa Barbara Remote Sensing

#### CRIS LWIR Diagnostic Data (Forward Swen) for All IW Diag Mode Fo 5/30/2004 Data Collect

![](_page_10_Figure_1.jpeg)

# Development Sensor Highlights (cont.)

![](_page_11_Picture_1.jpeg)

 Conical Scanning Microwave Imager/Sounder (CMIS)

Boeing Space Systems Delta PDR complete

- 2.2 m antenna
- RF imaging at 6, 10, 18, 36, 90, and 166 GHz
- Profiling at 23, 50 to 60, 183 GHz
- Polarimetry at 10, 18, 36 GHz
- 1700 km swath width
- Radio Interference (RFI) ECP complete, negotiations being wrapped up

#### Global RFI from AMSR data

![](_page_12_Figure_1.jpeg)

#### **Option 2A RFI Mitigation Concept**

![](_page_13_Figure_1.jpeg)

Each Spectral line has a unique location, hence not all spectral magnitudes are in CMIS FOV at the same time

## Leveraged Sensor Highlights

![](_page_14_Picture_1.jpeg)

![](_page_14_Picture_2.jpeg)

![](_page_14_Picture_3.jpeg)

#### Radar Altimeter (ALT) Alcatel

- Measures range to ocean surface with a radar at 13.5 GHz
- Corrects for ionosphere with 5.3 GHz radar
- Corrects for atmosphere with CMIS water vapor measurements
- Precise orbit determination with GPS

#### • Earth's Radiation Budget Suite (ERBS) Northrop Grumman Space Technology

- Three spectral channels
- Total radiation measurement 0.3 to 50  $\mu m$
- Shortwave Vis and IR measurement 0.3 to 5  $\mu m$
- Longwave IR measurement 8 to 12  $\mu m$
- Total Solar Irradiance Sensor (TSIS) University of Colorado
  - Two sensors for total irradiance (TIM) & spectral irradiance (SIM)
    - TIM measures total solar irradiance
    - SIM measures spectral irradiance 200 to 2000 nm
  - Pointing platform and sensor suite to be provided by CU LASP
- Survivability Sensor (SS) Sandia National Labs

## Highlights of Other Sensors

![](_page_15_Picture_1.jpeg)

![](_page_15_Picture_2.jpeg)

![](_page_15_Picture_3.jpeg)

- Space Environment Sensor Suite (SESS) Ball Aerospace Proposal in evaluation
  - Sensor suite collecting data on particles, fields, aurora, and ionosphere
  - Suite includes a UV disk imager (BATC), EUV limb imager (BATC), charged particle detectors (Amptek/U. of Chicago), thermal plasma sensors (UTD), a magnetometer (MEDA), and a coherent beacon sensor (AIL)
- Advanced Data Collection System (ADCS) and Search and Rescue Satellite-Aided Tracking (SARSAT) ITAR agreements done
  - "GFE" to NPOESS from France and Canada
  - ADCS supports global environmental applications
  - SARSAT collects distress beacon signals
- Aerosol Polarimetry Sensor (APS) Raytheon Santa Barbara Research Center Full development on hold pending NASA satellite "Glory" plans
  - Aerosol characterizations of size, single scattering albedo, aerosol refractive index, aerosol phase function
  - Multispectral (broad, 0.4 to 2.25 μm)
  - Multiangular (175 angles)
  - Polarization (all states)

# NPOESS P<sup>3</sup>I

- Need for continued evolution recognized from very beginning of program
  - P3I requirements in paras 1.6 and 4.1.6.8 of IORD II
  - NASA's role in NPOESS (per PDD) is technology development
- P3I is built into the NPOESS program to :
  - Respond to changing/modified user needs
  - To track, monitor, and respond to identified user products that the current NPOESS system can not implement due to technological constraints.
- Two forms of NPOESS P3I are envisioned
  - Modification of existing sensor to accomplish need
  - New sensor development required to implement need

#### Pre-Planned Product Improvement (P3I) EDR Candidates

**Tropospheric winds Neutral winds** All weather day/night imagery Coastal sea surface winds Ocean wave characteristics Surf conditions **Oil spill location** Littoral current CH4 column CO column CO<sub>2</sub> column **Optical background** Sea and lake ice Coastal ocean color **Bioluminescence potential Coastal sea surface temperature** Sea surface height coastal **Bathymetry** Vertical hydrometeor profile Salinity

## **2130 CONFIGURATION**

![](_page_18_Figure_1.jpeg)

**STOWED CONFIGURATION** 

# Expand the Capability of VIIRS to measure/Image water vapor

- Modify VIIRS by adding 6.7µ channel
  - Requires redesign of sensor in midwave to long wave band split
  - Treat as a block change in our production satellites
- First steps already taken by purchasing "lenslets" before vendor went out of business
- Change will take amendment to IORD and additional funds

## **CrIS Full Resolution Capability**

- CrIS data fidelity was reduced to constrain data bandwidth prior to system source selection
  - Full resolution is measured by the instrument, data reduced in OBC
  - What we had

| - | Band  | Data provided | Resolution (cm <sup>-1</sup> ) |
|---|-------|---------------|--------------------------------|
| • | Short | Fourth        | 2.5                            |
| • | Mid   | Half          | 1.25                           |
| • | Long  | Full          | 0.625                          |

- What we're doing
  - Examining capability to bring down full data
    - Not a data rate problem due to 1394a data bus
  - Studying best way to modify sensor
  - Running simulations to show performance as part of the value trade
- Plan
  - Complete study this winter, determine cost/benefit trades
  - Present to SUAG
- Why?
  - Carbon trace gasses!

## **NPOESS Operational Concept**

![](_page_21_Figure_1.jpeg)

Schriever MMC

**Monitor and Control Satellites** 

and Ground Elements

**MMC (Suitland)** 

3. Transport Data to Centrals for Processing

![](_page_21_Figure_3.jpeg)

Global fiber network connects 15 receptors to Centrals

## 4. Process Raw data into EDRs and Deliver to Centrals

![](_page_21_Picture_6.jpeg)

Full Capability at each Central

## NPOESS EDR Processing Timeline

#### **Current End-to-End EDR Latency**

![](_page_22_Figure_2.jpeg)

Time from Observation to Delivery (minutes)

## **NPOESS** Data Basics

![](_page_23_Picture_1.jpeg)

- There are three NPOESS data streams, potentially coming down simultaneously
  - SMD stored mission data
    - 100% of data observed by the satellite
    - Set of 15 sites around the world are called "SafetyNet™'
      - Linked to US by ATT fiber optic cable

#### - HRD - high rate data

- 100% of NPOESS data as it is observed (real time) by the satellite in view of a readout station (except data from ERBS and TSIS)
- 20 Mbps at X-band

#### LRD – Iow rate data

- Selected subset of NPOESS data
- 6x1 Compression of VIIRS data
- 3.8Mbps at L-band

Real-time links

#### NPOESS LRD Approach Balances Performance Provides Flexibility

![](_page_24_Figure_1.jpeg)

Programmable LRD downlink provides flexibility for the future

# Summary

- Program is making solid progress
  - All instruments are in test
    - Preliminary tests show excellent performance!!
    - VIIRS EDU (and probably FU) late to NPP need
  - NPP spacecraft proceeding on schedule
    - Completed C3 tests with NPOESS ground system
    - Completed 1394a data bus -- shows new instruments will "talk" to satellite
    - Launch date will move -- planning in process
- There ARE technical challenges
  - VIIRS has overcome technical problems but has significant schedule problems
  - OMPS detectors are pacing assembly and test
  - CrIS and ATMS are doing fine in test

# 2005 WSEAS International Conference on REMOTE SENSING

Venice (Venezia), Italy, November 2-4, 2005

## http://www.worldses.org/conferences /2005/venice/remote/index.html

![](_page_26_Picture_3.jpeg)

**Two Keynote Speakers** 

![](_page_26_Picture_5.jpeg)