



### Validation Studies Using NAST- Interferometer Field Measurements

#### Allen M. Larar<sup>a</sup>, William L. Smith<sup>a</sup>, Daniel K. Zhou<sup>a</sup>, and Stephen Mango<sup>b</sup>

<sup>a</sup>NASA Langley Research Center, Hampton, VA <sup>b</sup>NPOESS Integrated Program Office, Silver Spring, MD







- Motivation
- Case study & data sources
- Instrument systems
- Validation methodology
- Results
- Summary & conclusions



## Motivation



# • Aircraft underflights fundamental to space-based sensor validation

- High-altitude aircraft platforms (Proteus, ER-2, DC-8, WB-57, P-3, etc.) instrumented with validation sensors (NAST-I, S-HIS, INTESA, NAST-M, LASE, MAS, etc.) provide validation data by obtaining spatially & temporally coincident observations with satellite platforms of interest (e.g. Terra (Modis), Aqua (Modis & AIRS), and future Aura (TES), Metop (IASI), EO-3 (GIFTS), and NPP/NPOESS (CrIS).
- Such airborne/satellite coincident data contribute toward essential cal/val activities
  - On-orbit Sensor performance verification
  - On-orbit sensor calibration validation
  - Validate algorithms
  - Direct and derived data product validation
  - Long-term monitoring of sensor performance (radiance & geophysical)



## **Case Study:** *PTOST*

• **PTOST (February 18 - March 13, 2003, HAFB, Hawaii).** The 2003 *Pacific THORPEX Observing System Test (PTOST)* was the first in a series of Pacific and Atlantic observation campaigns in support of the WWRP/USRP THORPEX Program. THORPEX - a Global Atmospheric Research Program aimed at improving short range (up to 3 days), medium range (3-7 days) and extended range (two week) weather predictions. Flights targeted frontal boundaries and storm systems, as well as satellite sensor validation underflights (TERRA, AQUA, and ICESat)

#### **Aircraft Payload Included:**

ER-2 (NAST-I, NAST-M, S-HIS, MAS, CPL); G-IV (Dropsondes, in-situ O<sub>3</sub>)



13th International TOVS Study Conference, ITSC-13, Larar et al., 31 October, 2003.



Satellite Platforms Included: Terra & Aqua



## The NAST & SHIS Systems



✓ Validation tools

- ✓ NPOESS risk mitigation
- ✓ Airborne science
- ✓ Engineering testbeds



#### <u>Instruments</u>

 $\begin{array}{l} \mbox{IR Interferometer (NAST-I)} \\ \mbox{Spectral Range: } 3.5 - 16 \mbox{ microns} \\ \mbox{Spectral Res.: } 0.25 \mbox{ cm-1} (v/v\delta > 2000 \ ) \\ \mbox{Spatial res.: } 130m/km \mbox{ flight alt.} \\ \mbox{A/C platforms: ER-2, Proteus} \end{array}$ 

Microwave Radiometer (NAST-M) Spectral Regions: 50 - 60 GHz, 113 - 119 GHz, 183 GHz, 425GHz A/C platforms: ER-2, Proteus

IR Interferometer (S-HIS) Spectral Range: 3 - 17 microns Spectral Res.: 0.5 cm-1 ( $\nu/\nu\delta > 1000$ ) Spatial res.: 100m/km flight alt. A/C platforms: ER-2, Proteus, DC-8



## Characteristics of Remote Sensors Employed in Study



| Instrument system | <u>Sensor type</u>          | <u>Spectral extent</u>                                                                     | Spectral resolution                               | <u>Nadir IFOV</u>     | <u>Platform</u> |
|-------------------|-----------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------|-----------------|
| NAST-I            | Michelson<br>interferometer | 3.5 – 16 μ,<br>continuous                                                                  | 0.25 cm <sup>-1</sup> , υ/δυ ><br>2000            | 2.5 km<br>(from ER-2) | ER-2            |
| S-HIS             | Michelson<br>interferometer | 3.0 – 17 μ,<br>continuous                                                                  | 0.5 cm <sup>-1</sup> , υ/δυ ><br>1000             | 2.0 km<br>(from ER-2) | ER-2            |
| AIRS              | Grating<br>spectrometer     | 3.8 – 15.4 μ,<br>discrete<br>channels                                                      | ~0.4 – 2.2 cm <sup>-1</sup> ,<br>υ/δυ ~ 1200      | ~ 13.5 km             | AQUA            |
| MODIS             | Radiometer                  | $\begin{array}{l} 3.6-14.4\ \mu\ (IR\\ bands\ 20-36)\ ,\\ discrete\\ channels \end{array}$ | ~13 – 128 cm <sup>-1</sup> ,<br>broadband filters | ~ 1 km                | AQUA            |
| MAS               | Radiometer                  | $\begin{array}{l} 3.6-14.4\ \mu\ (IR\\ bands\ 20-36)\ ,\\ discrete\\ channels \end{array}$ | ~13 – 128 cm <sup>-1</sup> ,<br>broadband filters | ~ 50 m                | ER-2            |



NASA





## **Study Methodology**



- Incorporate multiple, independent, temporally- & spatially-coincident data sources
  - <u>Satellite:</u> AQUA AIRS & MODIS
  - <u>ER-2</u>: NAST-I, S-HIS, MAS, in-situ  $O_3$
  - <u>G-IV:</u> dropsondes
  - <u>HI:</u> radiosonde
  - <u>Buoys:</u> ~ SST
- Verify spatial co-registration by comparing geo-referenced images at select  $\lambda$
- LBL- & FFM-based calculations for simulated observations
  - SST from distant buoy & NAST-I retrieved; atmospheric profiles from vertical combination of dropsondes, NAST-I retrieved, radiosonde, in-situ O<sub>3</sub>, NOAA-88, and standard atmosphere
- Compare nadir-coincident observations and simulations with Modis broadband SRFs applied (or similar, i.e. MAS)
- For clear region, compare high resolution spectra
  - PC-filtering applied to measured radiances & then averaged over clear FOVs
  - Measurements and simulations, on original and common spectral scales
    - Original SRFs and combined (i.e., NAST-I\*S-HIS\*AIRS, S-HIS\*AIRS, AIRS\*S-HIS)



# Sat & A/C Ground Tracks







13<sup>th</sup> International TOVS Study Conference, ITSC-13, Larar et al., 31 October, 2003.



# Nadir Track Coincidence with MODIS Broadband SRFs









#### **NAST-I Window Region Warm Bias?**



13th International TOVS Study Conference, ITSC-13, Larar et al., 31 October, 2003.



### Baseline Measured Spectra w/ Original SRFs







13th International TOVS Study Conference, ITSC-13, Larar et al., 31 October, 2003.





#### Spectra Comparison with Common SRFs [NAST-I\*SHIS\*AIRS; SHIS\*AIRS; AIRS\*SHIS]







## **Summary & Conclusions**



- Instrument systems and simulation agreement shown, in general, to be within acceptable levels considering measurement and forward model uncertainties
- Offsets from Modis of similar magnitude and direction to that reported in earlier studies (e.g. Tobin et al., OSA FTS mtg., 2003; Moeller et al., SPIE SD03) and possibly due to calibration offsets or SRF spectral shifts
- Spectral fidelity easily verified via simulations, but corresponding radiometric accuracy verification from simulation is limited by vertical accuracy of ancillary data and absolute accuracy of spectroscopic parameters
- High resolution FTS systems provide continuous spectra of high radiometric and spectral fidelity enabling emulation of other high-resolution or broadband instrument systems
- NAST-I & S-HIS provide high spatial/spectral/temporal resolution radiance measurements for atmospheric state characterization; such airborne observations over calibration sites (e.g., DoE ARM CART) can be used to account for time and space variability when comparing and interpreting other measurements (e.g., ground-, balloon-, aircraft-, and space-based systems)
- Spatial and temporal coincidence between observing systems crucial to differentiate between measurement uncertainty and geophysical variability
- Aside from collocated sensor(s) on same platform, space-based sensor validation best achieved using high-altitude aircraft based sensors viewing nadir and possibly zenith; can eliminate errors from spatial and temporal mismatches and spectroscopic data uncertainties, and allows viewing most of atmospheric column