

Validation of AIRS Spectral Radiances with the Scanning HIS Aircraft Instrument

Hank Revercomb, David C. Tobin, Robert O. Knuteson, Fred A. Best, William L. Smith*, Paul van Delst, Daniel D. LaPorte, Scott D. Ellington, Mark W.Werner, Ralph G. Dedecker, Ray K. Garcia, Nick N. Ciganovich, H.Benjamin Howell, and Steven Dutcher

> University of Wisconsin-Madison, Space Science and Engineering Center * NASA Langley Research Center International TOVS Study Conference XIII Sainte Adele, Canada 29 October 2003 - 4 November 2003

TOPICS

1. Scanning-HIS

Fall 2002 - Oklahoma

Oklahoma, ARM UAV "Grand Tour" (SHIS on Proteus at 15 km, 16 Nov 2002)

2. AIRS Radiance Validation

Gulf of Mexico, Terra/Aqua 2002 (SHIS on ER2 at 20 km, 21 Nov 2002)

3. AIRS Assessment of MODIS Calibration

S-HIS Uplooking

UW Scanning HIS: 1998-Present

(HIS: High-resolution Interferometer Sounder, 1985-1998)

Characteristics

Spectral Coverage: 3-17 microns
Spectral Resolution: 0.5 cm⁻¹
Resolving power: 1000-6000
Footprint Diam: 1.5 km @ 15 km
Cross-Track Scan: Programmable including uplooking zenith view

Applications:

- Radiances for Radiative Transfer
- Temp & Water Vapor Retrievals
- Cloud Radiative Prop.
- Surface Emissivity & T
- ♦ Trace Gas Retrievals

SSEC Scanning HIS on 1st ARM-UAV Mission with Proteus, October 2002

Scanning-HIS Band Overlap Agreement

S-HIS zenith and cross-track scanning Earth views 11-16-2002 from Proteus @ ~14km

Observed and Caculated zenith views from Proteus @ ~14km

Calculation based on 18Z ECMWF analysis, with 0.0004 cm H₂O above 14km

Radiance Validation of AIRS with S-HIS

AIRS / SHIS Comparisons

A detailed comparison should account for:

- instrumental noise and scene variations
- Different observation altitudes (AIRS is 705km, SHIS is ~20km on ER2, ~14km on Proteus)
- Different view angles (AIRS is near nadir, SHIS is ~±35deg from nadir)
- Different spatial footprints (AIRS is ~15km at nadir, SHIS is ~2km at nadir)
- Different spectral response (AIRS $\Delta v = v/1200$, SHIS $\Delta v = ~0.5$ cm⁻¹) and sampling

AIRS / SHIS Comparison steps

- 0. Average SHIS data within AIRS FOV(s) & compare
 - No attempt to account for view angle, altitude, spectral differences.
- 1. <u>Compare Residuals from calculations</u>: (obs-calc)_{SHIS} to (obs-calc)_{AIRS}
 - SHIS and AIRS calcs each done at correct altitudes, view angles, spectral resolution and sampling.
 - Monochromatic calcs done using same forward model, atmospheric state, and surface property inputs.
- 2. Difference Residuals: Spectral Resolutions made similar
 - valid comparison except for channels mainly sensitive to upper atmosphere, above proteus altitude

MODIS 12 µm Band Tbs(K) & near-nadir AIRS FOVs

MODIS 12 micron Band & near-nadir AIRS FOVs

8 AIRS FOVs used in the following comparisons

"comparison 0" 8 AIRS FOVs, 448 SHIS FOVs, PC filtering

<u>AIRS</u> Compared to <u>S-HIS</u>, 21 Nov 2002

<u>AIRS</u> Compared to <u>S-HIS</u>, 21 Nov 2002

<u>AIRS</u> Compared to <u>S-HIS</u>, 21 Nov 2002

Different viewing angle make daytime comparisons less accurate

Small Spectral Shift (3% of resolution) in AIRS Module-05 identified from S-HIS Validation

Tobin, et al., CALCON 2003, presented S-HIS Spectral Calibration

"Comparison 2" (21 November 2002) Excluding channels strongly affected by atmosphere above ER2

Calibration and Validation for IR radiance observations are now concerned with tenths of K, not degrees K !

High Spectral Resolution is an important part of the reason (Goody & Haskins, J Climate,1998)

AIRS Assessment of MODIS Calibration

AIRS spectrum and Aqua MODIS Band MODIS Band / wavelength(µm) **Spectral Response Functions** 36 14.2 35

3.7 33 13.4 32 2.0 31 11.0 11.0 30 29 9.7 28 7.3 27 6.8 1

3.9

25 4.5 24 4.4 23 4.1 22 4.0 21 4.0

Fantastic AIRS - MODIS Agreement for Band 22 (4.0µm)!

Summary of AIRS-MODIS mean Tb differences

Red=without accounting for convolution error Blue=accounting for convolution error with mean correction from standard atmospheres

p-p Convolution Error (CE) Estimate

Band	Diff	CE	Diff	Std	N
21	0.10	-0.01	0.09	0.23	187487
22	-0.05	-0.00	-0.05	0.10	210762
23	-0.05	0.19	0.14	0.16	244064
24	-0.23	0.00	-0.22	0.24	559547
25	-0.22	0.25	0.03	0.13	453068
27	1.62	-0.57	1.05	0.30	1044122
28	-0.19	0.67	0.48	0.25	1149593
30	0.51	-0.93	-0.41	0.26	172064
31	0.16	-0.13	0.03	0.12	322522
32	0.10	0.00	0.10	0.16	330994
33	-0.21	0.28	0.07	0.21	716940
34	-0.23	-0.11	-0.34	0.15	1089663
35	-0.78	0.21	-0.57	0.28	1318406
36	-0.99	0.12	-0.88	0.43	1980369

<u>Shifting MODIS Band 35 (13.9 μm) by 0.8 cm⁻¹ Works</u> to Remove Mean bias and Scene Tb Dependence

AIRS-MODIS: un-shifted, shifted

Summary

•The calibration uncertainty of advanced high spectral resolution observations are approaching the 0.1 K desired for climate applications

•Aircraft high spectral resolution observations from Scanning-HIS [& its cousin the NPOESS Airborne Sounder Testbed (NAST)] are now proven tools for the detailed validation of satellite based observations

• AIRS is providing high quality global radiances for atmospheric sounding & climate applications, and a calibration reference for other IR instruments

Summary (2)

•High spectral resolution Aircraft comparisons provide a way to periodically test the absolute calibration of spacecraft instruments with instrumentation that can be carefully re-calibrated with reference standards on the ground.

This capability is especially valuable for assuring the long-term consistency and accuracy of weather and climate observations