

The Validation of AIRS Retrievals

Eric J. Fetzer, Edward T. Olsen, Luke L. Chen, Denise E. Hagan and Evan Fishbein [†] Jet Propulsion Laboratory Eric.J.Fetzer@jpl.nasa.gov

> Larry McMillin and Jiang Zhou NOAA / NESDIS

> > Presented by Bjorn Lambrigtsen, JPL

ITSC-13, Ste-Adèle, Canada, October 31, 2003

⁺ This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration

Outline:

August Data Release & New Results

- Public Data Release in August: Oceans between 40°S and 40°N
 - Further restricted so retrieved sea surface temperatures (SST) agree with NCEP forecast within ±3 K
 - a simple, temporary substitute for self-consistent indicators
 - recent analyses show this is not a perfect quality indicator
 - internal quality indicators are under development
 - Validated Quantities:
 - SST
 - ECMWF model, buoys, shipborne spectrometer
 - Temperature profiles (T)
 - ECMWF, sondes
 - Water vapor profiles (q)
 - ECMWF, sondes
- Exploratory Analyses: Some preliminary results

The AIRS / AMSU / HSB Retrieval System

- Utilizes a combination of *infrared* and *microwave* observations
 - AIRS: 2378 IR channels, 15 km horizontal resolution
 - HSB: 4 MW channels, 15 km horizontal resolution
 - AMSU: 15 MW channels, 50 km horizontal resolution
 - Vis/NIR: 4 channels, 2 km resolution (daytime-only diagnostics)
- Each retrieval uses 9 AIRS spectra, 9 HSB spectra, 1 AMSU spectrum
- Invert these radiances to geophysical quantities of cloud cleared radiance, T and q profiles, cloud properties, surface T and emissivity, trace gases.

The AIRS / AMSU / HSB Viewing Geometry

Effect of Constraining SST to ±3K from Forecast 6 September 2003, Nighttime

BLUE: Full IR retrievals GRAY: Other retrieval types RED: Full IR where |SST - Forecast SST| > 3 K Lambrigtsen / Fetzer, JPL

Magnitude of Cloud Clearing 6 Sept 2002, Retrieved Cloud Fraction: 40-50%

300 Averaged T_b Spectrum L2CC L1B 280 260 **Top:** Average observed М spectrum & average 240 cloud cleared spectrum 220 1000 1500 2000 2500 WAVENUMBER (cm⁻¹) $\alpha_{\rm eld}(0.4:0.5)$ Bias 10 SDev **Bottom:** Statistics of 8 cloud correction. 6 Х 4 2 0 1000 2000 2500 1500 WAVENUMBER (cm⁻¹)

3069 Night, Ocean, |Lat| < 40, All θ , v3.0.8.0 L2CC-L1B 20020906

Validating Cloud-Cleared Radiance

6 September 2002, night, cloud fractions of 40-50%

26 Final Clr, Night, Ocean, |Lat| < 40, All θ , v3.0.8.0 L2CC-ECMWF Sim V7 RTA 20020906

AIRS SST Compared with Shipborne Radiometer

M-AERI on Explorer of the Seas, Caribbean, Fall 2002

These Are Our Best SST Comparison Data (Not preselected by SST difference with NCEP forecast) \odot M-AERI SST (deg 6 bias=-0.85 degC 4 std=1.222 C -2 SST -6 AIRS 50 100 150 200 250 300 0 Observation series

Temperature Profile Differences with ECMWF 6 September 2002, day and night, 40S-40N, oceans

General agreement with 3 'truth' data sets Except... Dry bias in *very* wet areas

Data source	Relative Bias, percent	Relative RMS, percent
ECMWF analyses	0.01	16.2
Operational sondes	1.9	13.7
Dedicated Sondes, Chesapeake Platform	-0.1	10.6
Dedicate Sondes, Nauru* (ARM TWP)	-10.0	11.4

*Nauru is THE global water vapor maximum (Piexoto & Oort, 1993)

Total Water from Sondes at Chesapeake Light Platform

September-October 2002; Dynamic range is a mix of meteorology and burst balloons!

Water Vapor Profile

ECMWF, sondes in agreement to 500 mb

Layer	ECMWF (%)	Operational Sondes (%)
1100 to 700 mb	-1.8 ± 9.6	3.6 ± 11.0
700 to 500 mb	-1.1 ± 31.2	0.0 ± 26.5
500 to 350 mb*	-12.5 ± 30.0	-3.7 ± 50.5

*Are these errors from AIRS or the correlative data?

Upper tropospheric humidity is currently a major validation activity

AIRS and ECMWF at Nauru (ARM TWP)

Conclusions:

Cloud-Cleared Rad., SST, Temperature, Water Vapor

- Cloud cleared radiance based only on ECMWF
 - ~0.5 to 3 K, strongly dependent on cloud fraction
- General agreement for other quantities from multiple data sources
 - SST: ~0.9 ± 1 K from buoys, ECMWF, radiometer
 - Temperature profile: ~0.2 ± 0.6-1.2 K from sondes and ECMWF
 - lower trop most difficult
 - Total water vapor: ~1 ± 10-15% from sondes and ECMWF
 - Water vapor profile: ~1± 10-30% from sondes, ECMWF
 - best results in lower troposphere

Some Preliminary Results:

Retrieving Small-Scale Structure near the Surface

• Today's Example: Temperature inversions off west coast of Mexico and US.

Near-Surface Temperature Inversions

Granule 210, 3 January 2003

Left: 'Good' (SST) inversions in red

Right: Vis/NIR image

Good Agreement with ECMWF in Temperature

NOTE: T agrees well, humidity does not!

Conclusions: Exploratory Analyses

- Small vertical scale structure is seen in the AIRS retrievals.
 - Particularly apparent in temperature, supported by ECMWF
 - Cloud fields are consistent with Vis/NIR (not shown).
 - Currently examining humidity